Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 390: 28-38, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38768686

ABSTRACT

Nutrient signaling pathways play a pivotal role in regulating the balance among metabolism, growth and stress response depending on the available food supply. They are key factors for the biotechnological success of the yeast Saccharomyces cerevisiae during food-producing fermentations. One such pathway is Retrograde Response, which controls the alpha-ketoglutarate supply required for the synthesis of amino acids like glutamate and lysine. Repressor MKS1 is linked with the TORC1 complex and negatively regulates this pathway. Deleting MKS1 from a variety of industrial strains causes glycerol to increase during winemaking, brewing and baking. This increase is accompanied by a reduction in ethanol production during grape juice fermentation in four commercial wine strains. Interestingly, this does not lead volatile acidity to increase because acetic acid levels actually lower. Aeration during winemaking usually increases acetic acid levels, but this effect reduces in the MKS1 mutant. Despite the improvement in the metabolites of oenological interest, it comes at a cost given that the mutant shows slower fermentation kinetics when grown in grape juice, malt and laboratory media and using glucose, sucrose and maltose as carbon sources. The deletion of RTG2, an activator of Retrograde Response that acts as an antagonist of MKS1, also results in a defect in wine fermentation speed. These findings suggest that the deregulation of this pathway causes a fitness defect. Therefore, manipulating repressor MKS1 is a promising approach to modulate yeast metabolism and to produce low-ethanol drinks.


Subject(s)
Ethanol , Fermentation , Glycerol , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Wine , Glycerol/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Ethanol/metabolism , Wine/microbiology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Up-Regulation , Repressor Proteins/genetics , Repressor Proteins/metabolism , Gene Expression Regulation, Fungal , Transaminases
2.
World J Microbiol Biotechnol ; 40(3): 88, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334894

ABSTRACT

The bioprospection of indigenous microorganism strains with biotechnological potential represents a prominent trend. Metschnikowia yeasts exhibit diverse capabilities, such as ethanol reduction in winemaking, biocontrol potential, and lipid production. In this work, local Metschnikowia strains were isolated from different fruits by their ability to produce pulcherrimic acid, a molecule that has been linked to biocontrol activity and that binds iron giving colored colonies. Five strains were selected, each from one of five distinct sources. All of them were identified as M. pulcherrima. All five were able inhibit other yeasts and one M. pulcherrima, called M7, inhibited the growth of Aspergillus nidulans. The selected strains accumulated lipid bodies in stationary phase. Certain non-conventional yeasts like Hanseniaspora vineae are very sensitive to biomass drying, but cell extracts from M. pulcherrima added to the growth media as a source of antioxidant lipids increased their tolerance to drying. All strains isolated showed good stress tolerance (particularly to heat) and have nutrient requirements similar to a commercial M. pulcherrima strain. In addition, the M7 strain had a good growth in sugarcane and beet molasses and behaved like Saccharomyces cerevisiae in a growth medium derived from agricultural waste, a persimmon hydrolysate. Therefore, the isolation of local strains of Metschnikowia able to grow in a variety of substrates is a good source of biocontrol agents.


Subject(s)
Metschnikowia , Wine , Saccharomyces cerevisiae/metabolism , Metschnikowia/metabolism , Wine/analysis , Fruit , Lipids
3.
Food Res Int ; 159: 111649, 2022 09.
Article in English | MEDLINE | ID: mdl-35940817

ABSTRACT

The bulk of grape juice fermentation is carried out by the yeast Saccharomyces cerevisiae, but non-Saccharomyces yeasts can modulate many sensorial aspects of the final products in ways not well understood. In this study, some of such non-conventional yeasts were screened as mixed starter cultures in a defined growth medium in both simultaneous and sequential inoculations. One strain of Starmerella bacillaris and another of Zygosaccharomyces bailii were chosen by their distinct phenotypic footprint and their ability to reduce ethanol levels at the end of fermentation. S. bacillaris losses viability strongly at the end of mixed fermentations, while Z. bailii remains viable. S. cerevisiae viability was unchanged by the presence of the other yeasts. Physiological characterization of both strains indicates that S. bacillaris behavior is overall more different from S. cerevisiae than Z. bailii. In addition, S. cerevisiae transcriptome changes to a bigger degree in the presence of S. bacillaris in comparison to mixed fermentation with Z. bailii. S. bacillaris induces the translation machinery and repress vesicular transport. Both non-Saccharomyces yeasts induce S. cerevisiae glycolytic genes, and that may be related to ethanol lowering, but some aspects of carbon-related mechanisms are specific for each strain. Z. bailii presence increases the stress-related polysaccharides trehalose and glycogen, while S. bacillaris induces gluconeogenesis genes.


Subject(s)
Wine , Ethanol/analysis , Fermentation , Saccharomyces cerevisiae/metabolism , Saccharomycetales , Wine/analysis
4.
Microorganisms ; 8(10)2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33036195

ABSTRACT

Peroxiredoxins are a family of peroxide-degrading enzymes for challenging oxidative stress. They receive their reducing power from redox-controlling proteins called thioredoxins, and these, in turn, from thioredoxin reductase. The main cytosolic peroxiredoxin is Tsa1, a moonlighting protein that also acts as protein chaperone a redox switch controlling some metabolic events. Gene deletion of peroxiredoxins in wine yeasts indicate that TSA1, thioredoxins and thioredoxin reductase TRR1 are required for normal growth in medium with glucose and sucrose as carbon sources. TSA1 gene deletion also diminishes growth in molasses, both in flasks and bioreactors. The TSA1 mutation brings about an expected change in redox parameters but, interestingly, it also triggers a variety of metabolic changes. It influences trehalose accumulation, lowering it in first molasses growth stages, but increasing it at the end of batch growth, when respiratory metabolism is set up. Glycogen accumulation at the entry of the stationary phase also increases in the tsa1D mutant. The mutation reduces fermentative capacity in grape juice, but the vinification profile does not significantly change. However, acetic acid and acetaldehyde production decrease when TSA1 is absent. Hence, TSA1 plays a role in the regulation of metabolic reactions leading to the production of such relevant enological molecules.

5.
Article in English | MEDLINE | ID: mdl-32793580

ABSTRACT

The ability of the yeast Saccharomyces cerevisiae to adapt to the changing environment of industrial processes lies in the activation and coordination of many molecular pathways. The most relevant ones are nutrient signaling pathways because they control growth and stress response mechanisms as a result of nutrient availability or scarcity and, therefore, leave an ample margin to improve yeast biotechnological performance. A standardized grape juice fermentation assay allowed the analysis of mutants for different elements of many nutrient signaling pathways under different conditions (low/high nitrogen and different oxygenation levels) to allow genetic-environment interactions to be analyzed. The results indicate that the cAMP-dependent PKA pathway is the most relevant regardless of fermentation conditions, while mutations on TOR pathways display an effect that depends on nitrogen availability. The production of metabolites of interest, such as glycerol, acetic acid and pyruvate, is controlled in a coordinated manner by the contribution of several components of different pathways. Ras GTPase Ras2, a stimulator of cAMP production, is a key factor for achieving fermentation, and is also relevant for sensing nitrogen availability. Increasing cAMP concentrations by deleting an enzyme used for its degradation, phosphodiesterase Pde2, proved a good way to increase fermentation kinetics, and offered keys for biotechnological improvement. Surprisingly glucose repression protein kinase Snf1 and Nitrogen Catabolite Repression transcription factor Gln3 are relevant in fermentation, even in the absence of starvation. Gln3 proved essential for respiration in several genetic backgrounds, and its presence is required to achieve full glucose de-repression. Therefore, most pathways sense different types of nutrients and only their coordinated action can ensure successful wine fermentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...