Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Publication year range
1.
Microorganisms ; 11(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37630532

ABSTRACT

Popillia japonica (Coleoptera: Scarabaeidae), is an emerging invasive pest in Europe and America. In the Azores, this pest was first found on Terceira Island during the sixties and soon spread to other islands. The rate of infestation differs between islands, and we hypothesized that microbiome composition could play a role. Therefore, we sampled 3rd instar larvae and soil from sites with high and low infestation rates to analyze the microbiome using next-generation sequencing. We analyzed twenty-four 16S DNA libraries, which resulted in 3278 operational taxonomic units. The alpha and beta diversity of the soil microbiome was similar between sites. In contrast, the larvae from high-density sites presented a higher bacterial gut diversity than larvae from low-density sites, with biomarkers linked to plant digestion, nutrient acquisition, and detoxification. Consequently, larvae from high-density sites displayed several enriched molecular functions associated with the families Ruminococcaceae, Clostridiaceae and Rikenellaceae. These bacteria revealed a supportive function by producing several CAZyme families and other proteins. These findings suggest that the microbiome must be one drive for the increase in P. japonica populations, thus providing a checkpoint in the establishment and spread of this pest.

2.
Insects ; 11(4)2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32231138

ABSTRACT

Entomopathogenic nematodes have been proposed as biological agents for the control of Drosophila suzukii, an invasive pest of small-stone and soft-skinned fruits. Larvae of the fly are susceptible to Steinernema carpocapsae infection but the reaction of immune defenses of the host are unknown. To determine the immune response, larvae were infected with S. carpocapsae and Xenorhabdus nematophila to evaluate the effector mechanisms of both humoral and cellular processes. The symbiont bacteria presented an inhibitory effect on the phenoloxidase cascade with a low level of melanization. Besides, X. nematophila activated the synthesis of putative antimicrobial peptides on the hemolymph of infected larvae. However, those peptides presented a lower antimicrobial activity compared to hemolymph from larvae infected with non-symbiont bacteria. Xenorhabdus nematophila avoided also the phagocytosis response of hemocytes. During in vitro and in vivo assays, S. carpocapsae was not encapsulated by cells, unless the cuticle was damaged with a lipase-treatment. Hemocyte counts confirmed differentiation of lamellocytes in the early phase of infection despite the unrecognition of the nematodes. Both X. nematophila and S. carpocapsae avoided the cellular defenses of D. suzukii larvae and depressed the humoral response. These results confirmed the potential of entomopathogenic nematodes to control D. suzukii.

SELECTION OF CITATIONS
SEARCH DETAIL
...