Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(11): e20972, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37908705

ABSTRACT

A rapid, sensitive, and simple UHPLC-MS/MS method for the determination of the PARP inhibitor talazoparib in mouse plasma was developed and validated using [13C,2H4]-talazoparib as an internal standard (IS). The assay procedure involved extraction of talazoparib and the IS from plasma using a single-step deproteination and separation of the analytes was achieved on an ACQUITY UPLC RP18 HSS T3 column with a mobile phase gradient at a flow rate of 0.4 mL/min in a run time of 5 min. The calibration curve was linear (r2 > 0.99) over the concentration range of 0.5-100 ng/mL, and 10-fold dilution of samples could be accurately quantitated. The matrix effect and mean extraction recovery for talazoparib were between 93.7-109% and 87.7-105%, respectively. Precision and percent bias of quality control samples were always less than ±15%, indicating reproducibility and accuracy of the method. Talazoparib demonstrated bench-top stability at room temperature for 6 h, auto-sampler and reinjection stability at 4 °C for at least 24 h, and no significant degradation was observed after three freeze-thaw cycles. The developed method was successfully applied to pharmacokinetic studies involving serial blood sampling after oral administration of talazoparib to wild-type mice and animals with a genetic deficiency of the efflux transporters ABCB1 (P-gp) and ABCG2 (BCRP). Together, our results demonstrate the successful development of a suitable analytical method for talazoparib in mouse plasma and suggest that mice are a useful model to evaluate transporter-mediated drug-drug interactions involving therapy with talazoparib.

2.
Clin Transl Sci ; 16(8): 1309-1322, 2023 08.
Article in English | MEDLINE | ID: mdl-37345219

ABSTRACT

Although DNA methyltransferase inhibitors (DNMTis), such as azacitidine and decitabine, are used extensively in the treatment of myelodysplastic syndromes and acute myeloid leukemia, there remain unanswered questions about DNMTi's mechanism of action and predictors of clinical response. Because patients often remain on single-agent DNMTis or DNMTi-containing regimens for several months before knowing whether clinical benefit can be achieved, the development and clinical validation of response-predictive biomarkers represents an important unmet need in oncology. In this review, we will summarize the clinical studies that led to the approval of azacitidine and decitabine, as well as the real-world experience with these drugs. We will then focus on biomarker development for DNMTis-specifically, efforts at determining exposure-response relationships and challenges that remain impacting the broader clinical translation of these methods. We will highlight recent progress in liquid-chromatography tandem mass spectrometry technology that has allowed for the simultaneous measurement of decitabine genomic incorporation and global DNA methylation, which has significant potential as a mechanism-of-action based biomarker in patients on DNMTis. Last, we will cover important research questions that need to be addressed in order to optimize this potential biomarker for clinical use.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Humans , Decitabine/therapeutic use , Azacitidine/therapeutic use , Azacitidine/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , DNA Methylation , DNA , Methyltransferases
3.
Molecules ; 27(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36296409

ABSTRACT

Gilteritinib, an FDA-approved tyrosine kinase inhibitor approved for the treatment of relapsed/refractory FLT3-mutated acute myeloid leukemia, is primarily eliminated via CYP3A4-mediated metabolism, a pathway that is sensitive to the co-administration of known CYP3A4 inhibitors, such as itraconazole. However, the precise mechanism by which itraconazole and other CYP3A-modulating drugs affect the absorption and disposition of gilteritinib remains unclear. In the present investigation, we demonstrate that pretreatment with itraconazole is associated with a significant increase in the systemic exposure to gilteritinib in mice, recapitulating the observed clinical drug-drug interaction. However, the plasma levels of gilteritinib were only modestly increased in CYP3A-deficient mice and not further influenced by itraconazole. Ensuing in vitro and in vivo studies revealed that gilteritinib is a transported substrate of OATP1B-type transporters, that gilteritinib exposure is increased in mice with OATP1B2 deficiency, and that the ability of itraconazole to inhibit OATP1B-type transport in vivo is contingent on its metabolism by CYP3A isoforms. These findings provide new insight into the pharmacokinetic properties of gilteritinib and into the molecular mechanisms underlying drug-drug interactions with itraconazole.


Subject(s)
Itraconazole , Leukemia, Myeloid, Acute , Mice , Animals , Itraconazole/pharmacology , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Aniline Compounds/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/pharmacology
4.
Int J Mol Sci ; 23(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35955741

ABSTRACT

Dofetilide is a rapid delayed rectifier potassium current inhibitor widely used to prevent the recurrence of atrial fibrillation and flutter. The clinical use of this drug is associated with increases in QTc interval, which predispose patients to ventricular cardiac arrhythmias. The mechanisms involved in the disposition of dofetilide, including its movement in and out of cardiomyocytes, remain unknown. Using a xenobiotic transporter screen, we identified MATE1 (SLC47A1) as a transporter of dofetilide and found that genetic knockout or pharmacological inhibition of MATE1 in mice was associated with enhanced retention of dofetilide in cardiomyocytes and increased QTc prolongation. The urinary excretion of dofetilide was also dependent on the MATE1 genotype, and we found that this transport mechanism provides a mechanistic basis for previously recorded drug-drug interactions of dofetilide with various contraindicated drugs, including bictegravir, cimetidine, ketoconazole, and verapamil. The translational significance of these observations was examined with a physiologically-based pharmacokinetic model that adequately predicted the drug-drug interaction liabilities in humans. These findings support the thesis that MATE1 serves a conserved cardioprotective role by restricting excessive cellular accumulation and warrant caution against the concurrent administration of potent MATE1 inhibitors and cardiotoxic substrates with a narrow therapeutic window.


Subject(s)
Anti-Arrhythmia Agents , Atrial Fibrillation , Animals , Anti-Arrhythmia Agents/pharmacology , Humans , Mice , Phenethylamines/pharmacology , Sulfonamides/therapeutic use
5.
Pharmaceutics ; 14(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35456528

ABSTRACT

Venetoclax, a BCL-2 inhibitor used to treat certain hematological cancers, exhibits low oral bioavailability and high interpatient pharmacokinetic variability. Venetoclax is commonly administered with prophylactic antifungal drugs that may result in drug interactions, of which the underlying mechanisms remain poorly understood. We hypothesized that antifungal drugs may increase venetoclax exposure through inhibition of both CYP3A-mediated metabolism and OATP1B-mediated transport. Pharmacokinetic studies were performed in wild-type mice and mice genetically engineered to lack all CYP3A isoforms, or OATP1B2 that received venetoclax alone or in combination with ketoconazole or micafungin. In mice lacking all CYP3A isoforms, venetoclax AUC was increased by 1.8-fold, and pretreatment with the antifungal ketoconazole further increased venetoclax exposure by 1.6-fold, despite the absence of CYP3A. Ensuing experiments demonstrated that the deficiency of OATP1B-type transporters is also associated with increases in venetoclax exposure, and that many antifungal drugs, including micafungin, posaconazole, and isavuconazole, are inhibitors of this transport mechanism both in vitro and in vivo. These studies have identified OATP1B-mediated transport as a previously unrecognized contributor to the elimination of venetoclax that is sensitive to inhibition by various clinically-relevant antifungal drugs. Additional consideration is warranted when venetoclax is administered together with agents that inhibit both CYP3A-mediated metabolism and OATP1B-mediated transport.

6.
Cancer Res Commun ; 1(2): 79-89, 2021 11.
Article in English | MEDLINE | ID: mdl-34950932

ABSTRACT

Ibrutinib (Imbruvica; PCI-32765) is an orally administered inhibitor of Bruton's tyrosine kinase that has transformed the treatment of B-cell malignancies. However, ibrutinib has very low oral bioavailability that contributes to significant variability in systemic exposure between patients, and this has the potential to affect both efficacy and toxicity. We hypothesized that the oral bioavailability of ibrutinib is limited by CYP3A isoform-mediated metabolism, and that this pathway can be inhibited to improve the pharmacokinetic properties of ibrutinib. Pharmacokinetic studies were performed in wild-type mice and mice genetically engineered to lack all CYP3A isoforms [CYP3A(-/-)] that received ibrutinib alone or in combination with CYP3A inhibitors cobicistat or ketoconazole. Computational modeling was performed to derive doses of ibrutinib that, when given after a CYP3A inhibitor, results in therapeutically-relevant drug levels. Deficiency of CYP3A in mice was associated with a ~10-fold increase in the area under the curve of ibrutinib. This result could be phenocopied by administration of cobicistat before ibrutinib in wild-type mice, but cobicistat did not influence levels of ibrutinib in CYP3A(-/-) mice. Population pharmacokinetic and prospectively validated physiologically-based pharmacokinetic models established preclinical and clinical doses of ibrutinib that could be given safely in combination with cobicistat without negatively affecting anti-leukemic properties. These findings signify a dominant role for CYP3A-mediated metabolism in the elimination of ibrutinib, and suggest a role for pharmacological inhibitors of this pathway to intentionally modulate the plasma levels and improve the therapeutic use of this clinically important agent.


Subject(s)
Cytochrome P-450 CYP3A , Percutaneous Coronary Intervention , Animals , Mice , Cytochrome P-450 CYP3A/genetics , Piperidines , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Cobicistat
7.
Article in English | MEDLINE | ID: mdl-34365291

ABSTRACT

A simple, fast and precise LC-MS/MS method for the quantitation of the tyrosine kinase inhibitor gilteritinib was developed and validated for micro-volumes of mouse plasma. The assay procedure involved a one-step extraction of gilteritinib and the internal standard [2H5]-gilteritinib with acetonitrile. An Accucore aQ column was used to separate analytes using a gradient elution delivered at a flow rate of 0.4 mL/min, and a total run time of 2.5 min. Validation studies with quality control samples processed on consecutive days revealed that values for intra-day and inter-day precision were <7.04%, with an accuracy of 101-108%. Linear responses were observed over the entire calibration curve range (up to 500 ng/mL), and the lower limit of quantification was 5 ng/mL. The developed method was successfully used to examine the pharmacokinetics of oral gilteritinib in wild-type mice and mice lacking the organic cation transporters OCT1, OCT2, and MATE1 to further understand mechanisms contributing to drug-drug interactions and causes of inter-individual pharmacokinetic variability.


Subject(s)
Aniline Compounds/blood , Chromatography, Liquid/methods , Pyrazines/blood , Tandem Mass Spectrometry/methods , Aniline Compounds/chemistry , Aniline Compounds/pharmacokinetics , Animals , Female , HEK293 Cells , Humans , Limit of Detection , Linear Models , Mice , Pyrazines/chemistry , Pyrazines/pharmacokinetics , Reproducibility of Results
8.
Front Pharmacol ; 12: 644342, 2021.
Article in English | MEDLINE | ID: mdl-33790797

ABSTRACT

Organic cation transporter 1 (OCT1) is a transporter that regulates the hepatic uptake and subsequent elimination of diverse cationic compounds. Although OCT1 has been involved in drug-drug interactions and causes pharmacokinetic variability of many prescription drugs, details of the molecular mechanisms that regulate the activity of OCT1 remain incompletely understood. Based on an unbiased phospho-proteomics screen, we identified OCT1 as a tyrosine-phosphorylated transporter, and functional validation studies using genetic and pharmacological approaches revealed that OCT1 is highly sensitive to small molecules that target the protein kinase YES1, such as dasatinib. In addition, we found that dasatinib can inhibit hepatic OCT1 function in mice as evidenced from its ability to modulate levels of isobutyryl L-carnitine, a hepatic OCT1 biomarker identified from a targeted metabolomics analysis. These findings provide novel insight into the post-translational regulation of OCT1 and suggest that caution is warranted with polypharmacy regimes involving the combined use of OCT1 substrates and kinase inhibitors that target YES1.

9.
JCI Insight ; 5(23)2020 12 03.
Article in English | MEDLINE | ID: mdl-33268594

ABSTRACT

Effective treatment for AML is challenging due to the presence of clonal heterogeneity and the evolution of polyclonal drug resistance. Here, we report that TP-0903 has potent activity against protein kinases related to STAT, AKT, and ERK signaling, as well as cell cycle regulators in biochemical and cellular assays. In vitro and in vivo, TP-0903 was active in multiple models of drug-resistant FLT3 mutant AML, including those involving the F691L gatekeeper mutation and bone marrow microenvironment-mediated factors. Furthermore, TP-0903 demonstrated preclinical activity in AML models with FLT3-ITD and common co-occurring mutations in IDH2 and NRAS genes. We also showed that TP-0903 had ex vivo activity in primary AML cells with recurrent mutations including MLL-PTD, ASXL1, SRSF2, and WT1, which are associated with poor prognosis or promote clinical resistance to AML-directed therapies. Our preclinical studies demonstrate that TP-0903 is a multikinase inhibitor with potent activity against multiple drug-resistant models of AML that will have an immediate clinical impact in a heterogeneous disease like AML.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Female , Gene Duplication/drug effects , Humans , Leukemia, Myeloid, Acute/drug therapy , Male , Mice , Mice, Nude , Mutation/drug effects , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Pyrimidines/metabolism , Sulfonamides/metabolism , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
10.
Pharmaceutics ; 12(9)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32916864

ABSTRACT

Failure to recognize important features of a drug's pharmacokinetic characteristics is a key cause of inappropriate dose and schedule selection, and can lead to reduced efficacy and increased rate of adverse drug reactions requiring medical intervention. As oral chemotherapeutic agents, tyrosine kinase inhibitors (TKIs) are particularly prone to cause drug-drug interactions as many drugs in this class are known or suspected to potently inhibit the hepatic uptake transporters OATP1B1 and OATP1B3. In this article, we provide a comprehensive overview of the published literature and publicly-available regulatory documents in this rapidly emerging field. Our findings indicate that, while many TKIs can potentially inhibit the function of OATP1B1 and/or OATP1B3 and cause clinically-relevant drug-drug interactions, there are many inconsistencies between regulatory documents and the published literature. Potential explanations for these discrepant observations are provided in order to assist prescribing clinicians in designing safe and effective polypharmacy regimens, and to provide researchers with insights into refining experimental strategies to further predict and define the translational significance of TKI-mediated drug-drug interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...