Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Invest Surg ; 33(9): 803-812, 2020 Oct.
Article in English | MEDLINE | ID: mdl-30907191

ABSTRACT

Background: Acute brain death (ABD) is associated with inflammation and lung injury. Direct peritoneal resuscitation (DPR) improves blood flow to the vital organs after ABD. DPR reduces lung injury, but the mechanism for this is unknown. Methods: Male Sprague-Dawley rats were randomized to five groups (n = 8/group): (1) Sham (no ABD); (2) Targeted intravenous fluid (TIVF) (ABD plus enough IVF to maintain a MAP of 80 mmHg) at 2 hours post-resuscitation (RES); (3) ABD + TIVF + DPR (TIVF and 30 cc intraperitoneal 2.5% Delflex) at 2 hours post-RES; (4) ABD + TIVF at 4 hours post-RES; and (5) ABD + TIVF + DPR at 4 hours post-RES. Messenger RNA (mRNA) levels were measured using Qiagen qRT PCR. Protein levels were assessed using quantitative ELISAs and the Luminex MagPix system. Results: Use of DPR caused 5.8-fold downregulation of mRNA expression for TNF-α and 2.7-fold decrease for the TNF receptor compared to TIVF alone. Caspase 8 mRNA was also downregulated. Protein levels for TNF-α, TNF receptor, caspase 8, NFκB, and NFκB inhibitor kinase, which promotes dissociation of NFκB inhibitor, were reduced by DPR. Cell death markers M30 and M65 were also decreased with DPR. Conclusions: Use of DPR caused changes in the expression of multiple mRNAs and proteins in the caspase 8 apoptotic pathway. These data represent a mechanism through which DPR exerts its beneficial effects within the lung tissue.


Subject(s)
Brain Death , Caspase 8/genetics , Dialysis Solutions/administration & dosage , Lung Injury/prevention & control , Resuscitation/methods , Administration, Intravenous , Animals , Apoptosis/drug effects , Apoptosis/genetics , Caspase 8/analysis , Caspase 8/metabolism , Disease Models, Animal , Down-Regulation/drug effects , Fluid Therapy/methods , Gene Expression Regulation/drug effects , Humans , Injections, Intraperitoneal , Lung/pathology , Lung Injury/diagnosis , Lung Injury/etiology , Lung Injury/pathology , Male , Rats , Rats, Sprague-Dawley
2.
Shock ; 50(5): 565-571, 2018 11.
Article in English | MEDLINE | ID: mdl-29194344

ABSTRACT

BACKGROUND: Brain death is associated with significant lung injury and inflammation. This has been associated with worse long-term outcomes for transplanted lungs. Direct peritoneal resuscitation (DPR) reduces systemic inflammation in brain death and improves lung procurement rate. The effect of DPR on macrophage and neutrophil infiltration in the lungs is not known. METHODS: Male Sprague-Dawley rats had a 4F Fogarty catheter inserted into the skull and the balloon inflated until brain death was achieved. Rats were resuscitated with normal saline to maintain a mean arterial pressure of 80 mmHg (targeted intravenous fluid, TIVF) and DPR animals received an intraperitoneal injection of commercial peritoneal dialysis solution. Rats were sacrificed at 0, 2, 4, and 6 h after brain death. Protein levels were assessed using quantitative ELISA. Leukocytes were quantified using flow cytometry and immunohistochemistry. RESULTS: At all time points, DPR downregulated multiple inflammatory cytokines including IFN-γ, TNF-α, IL-1α, and IL-6. Adhesion molecules ICAM, E-selectin, and P-selectin were increased above sham at 4 and 6 h after brain death and reduced with DPR, whereas VCAM was reduced at 2 and 6 h. Infiltration of macrophages and neutrophils were trended downward at 6 h with DPR, though this difference was not statistically significant. CONCLUSIONS: Animals that received TIVF alone had significant increases in inflammatory cytokines within the lung tissue, leading to adhesion molecule expression and ultimately leukocyte infiltration. Each stage of inflammation was affected by DPR. Using DPR in brain dead organ donors shows promise as a way to reduce lung injury and inflammation.


Subject(s)
Brain Death/blood , Brain Death/immunology , Cytokines/blood , Peritoneum/metabolism , Peritoneum/pathology , Resuscitation/methods , Animals , Fluid Therapy , Inflammation , Interferon-gamma/blood , Interleukin-1alpha/blood , Interleukin-6/blood , Male , Rats , Rats, Sprague-Dawley , Shock, Hemorrhagic/metabolism , Shock, Hemorrhagic/pathology , Shock, Hemorrhagic/therapy , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...