Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Processes ; 212: 104941, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37673291

ABSTRACT

Attention is a cognitive domain often disrupted in neuropsychiatric disorders and continuous performance tests (CPTs) are common clinical assays of attention. In CPTs, participants produce a behavioral response to target stimuli and refrain from responding to non-target stimuli. Performance in CPTs is measured as the ability to discriminate between targets and non-targets. Rodent versions of CPTs (rCPTs) have been validated with both anatomical and pharmacological studies, providing a translational platform for understanding attention function. In humans, stimulus degradation, the inclusion of visual noise in the image to reduce resolution, in CPTs impairs performance. Reduced image contrast, changes in the relative luminescence of elements in the image, has been used in rCPTs to test similar constructs, but, to our knowledge, reduced image resolution has not been tested in an rCPT. In this study, we tested multiple levels of stimulus degradation in a touchscreen version of the rCPT in mice. We found that stimulus degradation significantly decreased performance in males and females. Specifically, we found decreased stimulus discrimination and increases in hit reaction time and reaction time variability. These findings are in line with the effects of stimulus degradation in human studies. These data extend the utility and translational value of the family of rCPTs by demonstrating that stimulus degradation in the form of reduced image resolution produces qualitatively similar behavioral responses in mice as those in previous human studies.

2.
J Neurochem ; 166(2): 189-200, 2023 07.
Article in English | MEDLINE | ID: mdl-37309600

ABSTRACT

The neurotensin system spans across the central nervous system, to the enteric nervous system (gut), and the periphery to govern behaviors and physiological responses that tune energy balance to maintain homeostasis. Neurotensin transmission is not only modulated by metabolic signals, neurotensin transmission itself can also impact metabolic state by exerting control over consumption, physical activity, and satiety signals. Many responses to sensory experiences and sleep processes are dictated by neurotensinergic activity via mechanisms that allow the organism to balance energy seeking and utilization to thrive in its environment. Given the broad reach neurotensin signaling has across the homeostatic landscape, understanding this system as a whole and examining new ways to target this system for therapeutic efficacy across many different conditions is necessary.


Subject(s)
Central Nervous System , Neurotensin , Neurotensin/metabolism , Central Nervous System/metabolism , Signal Transduction , Receptors, Neurotensin
SELECTION OF CITATIONS
SEARCH DETAIL
...