Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 659(2-3): 161-8, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21458448

ABSTRACT

The behavioral effects evoked by cannabinoids are primarily mediated by the CB(1) and CB(2) cannabinoid receptor subtypes. In vitro pharmacology of cannabinoid receptors has been elucidated using recombinant expression systems expressing either CB(1) or CB(2) receptors, with limited characterization in native cell lines endogenously expressing both CB(1) and CB(2) receptors. In the current study, we report the molecular and pharmacological characterization of the F-11 cell line, a hybridoma of rat dorsal root ganglion neurons and mouse neuroblastoma (N18TG2) cells, reported to endogenously express both cannabinoid receptors. The present study revealed that both receptors are of mouse origin in F-11 cells, and describes the relative gene expression levels between the two receptors. Pharmacological characterization of the F-11 cell line using cannabinoid agonists and antagonists indicated that the functional responses to these cannabinoid ligands are mainly mediated by CB(1) receptors. The non-selective cannabinoid ligands CP 55,940 and WIN 55212-2 are potent agonists and their efficacies in adenylate cyclase and MAPK assays are inhibited by the CB(1) selective antagonist SR141716A (SR1), but not by the CB(2) selective antagonist SR144528 (SR2). The endocannabinoid ligand 2AG, although not active in adenylate cyclase assays, was a potent activator of MAPK signaling in F-11 cells. The analysis of CB(1) and CB(2) receptor gene expression and the characterization of cannabinoid receptor pharmacology in the F-11 cell line demonstrate that it can be used as a tool for interrogating the endogenous signal transduction of cannabinoid receptor subtypes.


Subject(s)
Cell Line/drug effects , Cell Line/metabolism , Ganglia, Spinal/cytology , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2/genetics , Adenylyl Cyclases/metabolism , Animals , Base Sequence , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Dosage/genetics , Gene Expression/drug effects , Humans , Mice , Mitogen-Activated Protein Kinases/metabolism , Molecular Sequence Data , RNA, Messenger/genetics , Rats , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity
2.
J Pharmacol Exp Ther ; 336(1): 38-46, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20864505

ABSTRACT

H(3) antagonists increase the release of brain histamine, acetylcholine, noradrenaline, and dopamine, neurotransmitters that are known to modulate cognitive processes. The ability to release brain histamine supports the effect on attention and vigilance, but histamine also modulates other cognitive domains such as short-term and long-term memory. A number of H(3) antagonists, including 1-{3-[3-(4-chlorophenyl)propoxy]propyl}piperidine hydrochloride (BF2.649), (1R,3R)-N-ethyl-3-fluoro-3-[3-fluoro-4-(pyrrolidin-1-ylmethyl)phenyl]cyclobutane-1-carboxamide (PF-03654746), 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254), MK-0249 (structure not yet disclosed), JNJ-17216498 (structure not yet disclosed), and ABT-288 (structure not yet disclosed), have advanced to the clinical area for the potential treatment of human cognitive disorders. H(3) antagonists exhibited wake-promoting effects in humans and efficacy in narcoleptic patients, indicating target engagement, but some of them were not efficacious in patients suffering from attention-deficit hyperactivity disorder and schizophrenic patients. Preclinical studies have also shown that H(3) antagonists activate intracellular signaling pathways that may improve cognitive efficacy and disease-modifying effects in Alzheimer's disease. Ongoing clinical studies will be able to determine the utility of H(3) antagonists for the treatment of cognitive disorders in humans.


Subject(s)
Alzheimer Disease/drug therapy , Cognition Disorders/drug therapy , Drug Discovery , Histamine H3 Antagonists/therapeutic use , Receptors, Histamine H3 , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Animals , Cognition Disorders/metabolism , Cognition Disorders/psychology , Drug Discovery/trends , Histamine H3 Antagonists/metabolism , Humans , Receptors, Histamine H3/metabolism , Treatment Outcome
4.
J Pharmacol Exp Ther ; 328(1): 141-51, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18931146

ABSTRACT

Studies demonstrating the antihyperalgesic and antiallodynic effects of cannabinoid CB(2) receptor activation have been largely derived from the use of receptor-selective ligands. Here, we report the identification of A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], a potent and selective CB(2) agonist as characterized in in vitro pharmacological assays and in in vivo models of pain and central nervous system (CNS) behavior models. In radioligand binding assays, A-836339 displays high affinities at CB(2) receptors and selectivity over CB(1) receptors in both human and rat. Likewise, A-836339 exhibits high potencies at CB(2) and selectivity over CB(1) receptors in recombinant fluorescence imaging plate reader and cyclase functional assays. In addition A-836339 exhibits a profile devoid of significant affinity at other G-protein-coupled receptors and ion channels. A-836339 was characterized extensively in various animal pain models. In the complete Freund's adjuvant model of inflammatory pain, A-836339 exhibits a potent CB(2) receptor-mediated antihyperalgesic effect that is independent of CB(1) or mu-opioid receptors. A-836339 has also demonstrated efficacies in the chronic constrain injury (CCI) model of neuropathic pain, skin incision, and capsaicin-induced secondary mechanical hyperalgesia models. Furthermore, no tolerance was developed in the CCI model after subchronic treatment with A-836339 for 5 days. In assessing CNS effects, A-836339 exhibited a CB(1) receptor-mediated decrease of spontaneous locomotor activities at a higher dose, a finding consistent with the CNS activation pattern observed by pharmacological magnetic resonance imaging. These data demonstrate that A-836339 is a useful tool for use of studying CB(2) receptor pharmacology and for investigation of the role of CB(2) receptor modulation for treatment of pain in preclinical animal models.


Subject(s)
Amides/pharmacology , Cyclopropanes/pharmacology , Inflammation/physiopathology , Pain/physiopathology , Receptor, Cannabinoid, CB1/physiology , Receptor, Cannabinoid, CB2/physiology , Animals , CHO Cells , Cell Line , Cricetinae , Cricetulus , Dermatologic Surgical Procedures , Hindlimb , Humans , Hyperalgesia/physiopathology , Kidney/embryology , Magnetic Resonance Imaging/methods , Male , Pain, Postoperative/physiopathology , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB2/agonists
5.
Proc Natl Acad Sci U S A ; 101(23): 8603-7, 2004 Jun 08.
Article in English | MEDLINE | ID: mdl-15173580

ABSTRACT

In addition to their roles in desensitization and signaling of seven-membrane-spanning receptors, beta-arrestins have been more recently implicated in regulating non-seven-membrane-spanning receptor pathways. By using a yeast two-hybrid screen, we identified the inhibitor of NF-kappaB, IkappaBalpha, as a binding partner of beta-arrestin 1. Both beta-arrestin 1 and 2 interact with IkappaBalpha in transfected cells as assessed by immunoprecipitation experiments. Additionally, upstream kinases known to regulate the function of IkappaBalpha, such as IkappaB kinase alpha and beta and NF-kappaB-inducing kinase, were also shown to interact with beta-arrestin. Overexpression of either beta-arrestin 1 or beta-arrestin 2 led to marked inhibition of NF-kappaB activity, as measured by reporter gene activity. Inhibition of NF-kappaB activity was independent of the type of stimulus used for NF-kappaB activation. Conversely, suppression of beta-arrestin 1, but not beta-arrestin 2, expression by using RNA interference led to a 3-fold increase in tumor necrosis factor-stimulated NF-kappaB activity as measured by NF-kappaB mobility-shift analysis. These data uncover a role of beta-arrestins in the regulation of NF-kappaB-mediated gene regulation.


Subject(s)
Arrestins/pharmacology , I-kappa B Proteins/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Arrestins/genetics , Arrestins/metabolism , HeLa Cells , Humans , In Vitro Techniques , NF-KappaB Inhibitor alpha , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology , Transfection , Two-Hybrid System Techniques , beta-Arrestin 1 , beta-Arrestin 2 , beta-Arrestins
6.
J Biol Chem ; 279(9): 7807-11, 2004 Feb 27.
Article in English | MEDLINE | ID: mdl-14711824

ABSTRACT

beta-Arrestin2 not only plays essential roles in seven membrane-spanning receptor desensitization and internalization but also functions as a signal transducer in mitogen-activated protein kinase cascades. Here we show that the angiotensin II type 1A receptor-mediated activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in HEK-293 cells is increased when the cellular level of beta-arrestin1 is down-regulated by RNA interference but is decreased or eliminated when the cellular level of beta-arrestin2 is diminished. Such reciprocal effects of down-regulated levels of beta-arrestins 1 and 2 are primarily due to differences in the ability of the two forms of beta-arrestins to directly mediate ERK activation. These results are the first to demonstrate reciprocal activity of beta-arrestin isoforms on a signaling pathway and suggest that physiological levels of beta-arrestin1 may act as "dominant-negative" inhibitors of beta-arrestin2-mediated ERK activation.


Subject(s)
Arrestins/physiology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinases/metabolism , Receptor, Angiotensin, Type 1/physiology , Animals , Arrestins/genetics , Arrestins/pharmacology , Cell Line , Embryo, Mammalian , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Epidermal Growth Factor/pharmacology , Gene Expression , Humans , Inositol Phosphates/metabolism , Kidney , Mitogen-Activated Protein Kinase 3 , Protein Kinase C/antagonists & inhibitors , RNA, Small Interfering/genetics , Rats , Receptor, Angiotensin, Type 1/genetics , Recombinant Proteins , Signal Transduction/drug effects , Transfection , beta-Arrestins
7.
Proc Natl Acad Sci U S A ; 100(4): 1740-4, 2003 Feb 18.
Article in English | MEDLINE | ID: mdl-12582207

ABSTRACT

Beta-arrestins bind to activated G protein-coupled receptor kinase-phosphorylated receptors, which leads to their desensitization with respect to G proteins, internalization via clathrin-coated pits, and signaling via a growing list of "scaffolded" pathways. To facilitate the discovery of novel adaptor and signaling roles of beta-arrestins, we have developed and validated a generally applicable interfering RNA approach for selectively suppressing beta-arrestins 1 or 2 expression by up to 95%. Beta-arrestin depletion in HEK293 cells leads to enhanced cAMP generation in response to beta(2)-adrenergic receptor stimulation, markedly reduced beta(2)-adrenergic receptor and angiotensin II receptor internalization and impaired activation of the MAP kinases ERK 1 and 2 by angiotensin II. This approach should allow discovery of novel signaling and regulatory roles for the beta-arrestins in many seven-membrane-spanning receptor systems.


Subject(s)
Arrestins/metabolism , Endocytosis , RNA, Small Interfering/genetics , Signal Transduction , Base Sequence , Blotting, Western , Cell Line , DNA Primers , Enzyme Activation , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/metabolism , Molecular Sequence Data , Phosphorylation , beta-Arrestins
SELECTION OF CITATIONS
SEARCH DETAIL
...