Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Mar Pollut Bull ; 101(1): 193-199, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26581812

ABSTRACT

Contamination of surface waters by synthetic ultraviolet light (UV) filtering chemicals is a concern for the Virgin Islands National Park (VINP). Discrete water samples were collected from VINP bays to determine UV filter chemical presence in the coastal waters. Spatial distribution and the potential for partitioning between subsurface waters and the sea surface microlayer (SML) were also examined. The UV filter chemicals 4-methylbenzylidene camphor, benzophenone-3, octinoxate, homosalate, and octocrylene were detected at concentrations up to 6073 ng/L (benzophenone-3). Concentrations for benzophenone-3 and homosalate declined exponentially (r(2)=0.86 to 0.98) with distance from the beach. Limited data indicate that some UV filter chemicals may partition to the SML relative to the subsurface waters. Contamination of VINP coastal waters by UV filter chemicals may be a significant issue, but an improved understanding of the temporal and spatial variability of their concentrations would be necessary to better understand the risk they present.


Subject(s)
Water Pollutants, Chemical/analysis , Benzophenones/analysis , Camphor/analogs & derivatives , Camphor/analysis , Parks, Recreational , Ultraviolet Rays , United States Virgin Islands
2.
J Neurol Sci ; 358(1-2): 46-52, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26298797

ABSTRACT

OBJECTIVES: Phase I (PhI): assess the safety of Polyphenon E in people with multiple sclerosis (MS) and determine the futility of Polyphenon E as a neuroprotective agent. Correlate plasma levels of EGCG with neuroprotective effects. Phase II (PhII): Further assess safety and confirm the neuroprotective effects of Polyphenon E. DESIGN: PhI: single group futility study. PhII: parallel group randomized double-blind placebo-controlled study. PARTICIPANTS: Recruitment area (both studies): LSU MS Center, New Orleans, LA and general public from surrounding areas. Inclusion criteria (both studies): 1) MS per 2005 McDonald criteria; 2) relapsing remitting or secondary progressive MS; 3) stable for six months prior to enrollment on either no therapy or glatiramer acetate (GA) for the PhI study and on either on GA or Interferon ß for the PhII study. Exclusion criteria (both studies): 1) complete bone marrow ablation or alentuzumab use at any time; 2) mitoxantrone, cyclophosphamide, natalizumab or fingolimod use in the prior nine months; 3) liver problems or significant medical problems. INTERVENTIONS: PhI: Polyphenon E, a green tea extract containing 50% of the antioxidant Epigallocatechin-gallate (EGCG), two capsules twice daily (200mg of EGCG per capsule; total daily dose 800mg) for six months. PhII: Polyphenon E or matching placebo capsules, same dose for one year. Only the research pharmacist knew treatment assignment and she randomized participants (one-to-one, stratified by GA or Interferon ß, blocks of 4 or 6). Outcome evaluators did not discuss side effects with participants. OUTCOME MEASURES: PhI: 1) adverse events (AE); 2) futility: decrease in N-acetyl aspartate (NAA) from baseline to six months of 10% or more; 3) association between EGCG plasma levels and change in NAA. PhII: 1) AEs; 2) difference in the rate of change of NAA-levels over twelve months.We measured NAA using a point resolved magnetic resonance spectroscopic imaging sequence (TE30/TR2000) on a 10cm×10cm×1cm volume of interest (VOI) located just superior to the lateral ventricles. The field of view was 16×16 resulting in 1cm(3) voxels. We quantified NAA and creatine/phosphocreatine (Cr) levels using LCModel for post-processing. RESULTS: PhI: Ten participants enrolled and completed all assessments with no serious AEs. One discontinued therapy due to grade (G) I abnormal liver function tests (LFTs). We included all participants in the analysis. NAA adjusted for creatine increased by 10% [95% CI(3.4%,16.2%), p<0.01] rejecting the futility endpoint. PhII: Thirteen participants enrolled and twelve started treatment. The DSMB stopped the study because 5/7 participants on Polyphenon E had abnormal LFTs (G I, and 1G III). Median time to onset of abnormal LFTs was 20 weeks [Inter-Quartile Range (IQR) (10,23)]. Only two participants completed the six-month visit, so we could not analyze the NAA levels. PhI participants took capsules from lot 189I1107 while 6/7 PhII participants took capsules from a new lot (L0206306). Both lots had similar levels of EGCG but differed in the levels of minor catechins. There were no significant differences between the lots on participants' median free EGCG plasma levels at either 3h or 8h as well as conjugated EGCG levels at 3h (all p>0.4, Wilcoxon exact test). Free EGCG levels at 8h correlated with changes in NAA adjusted by water content. A 1ng/ml higher EGCG plasma concentration correlated with a 0.9% increase in NAA[95% CI(0.5%,1.4%), visit*level interaction F=14.4, p<0.001]. However, EGCG plasma concentrations did not correlate with NAA adjusted by creatine (1ng/ml higher EGCG was associated with 0.02%,[95% CI(-0.27%,0.3%) change in NAA, p>0.5]). There was a trend towards an increase in creatine levels (referenced to water content) from baseline to exit (1 5% increase, [95% CI(-6%,17%), p=0.4]). The free EGCG levels at 8hours correlated significantly with change in creatine levels (1ng/ml higher EGCG level at 8h was associated with a 1.1% increase in creatine [95% CI(0.6%,1.6%)]). Thus it is possible that the discrepancy between the correlation of the EGCG 8h levels with NAA changes referenced to water and the 8h EGCG levels with NAA changes referenced to creatine was due to a change in creatine among the subjects with higher EGCG levels. Conjugated 3h and 8h levels and free 3h levels did not correlate with NAA changes (all p >0.5). CONCLUSIONS/CLASSIFICATION OF EVIDENCE: Class III evidence: Polyphenon E at a dose of 400mg of EGCG twice a day is not futile at increasing brain NAA levels. Class I evidence: some lots of Polyphenon E have a high risk of hepatotoxicity. FUNDING: National Center for Complementary and Alternative Medicine K23AT004433, National Multiple Sclerosis Society RG4816-A-1 and National Institute of General Medical Sciences 1 U54 GM104940. Mitsui Norin provided Polyphenon E and placebo and their representative reviewed the manuscript prior to publication. Mitsui Norin was not involved in other aspects of the study. The decision to submit the manuscript remained with the investigators. REGISTRATION: NCT00836719 and NCT01451723


Subject(s)
Catechin/analogs & derivatives , Chemical and Drug Induced Liver Injury/enzymology , Multiple Sclerosis/drug therapy , Neuroprotective Agents , Plant Extracts , Adult , Catechin/administration & dosage , Catechin/pharmacology , Catechin/toxicity , Female , Humans , Male , Middle Aged , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Neuroprotective Agents/toxicity , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/toxicity , Treatment Outcome
3.
Mar Pollut Bull ; 70(1-2): 281-8, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23566560

ABSTRACT

Coral, fish, plankton, and detritus samples were collected from coral reefs in Virgin Islands National Park (VIIS) and Virgin Islands Coral Reef National Monument (VICR) to assess existing contamination levels. Passive water sampling using polar organic chemical integrative samplers (POCIS) and semi-permeable membrane devices found a few emerging pollutants of concern (DEET and galaxolide) and polynuclear aromatic hydrocarbons. Very little persistent organic chemical contamination was detected in the tissue or detritus samples. Detected contaminants were at concentrations below those reported to be harmful to aquatic organisms. Extracts from the POCIS were subjected to the yeast estrogen screen (YES) to assess potential estrogenicity of the contaminant mixture. Results of the YES (estrogen equivalency of 0.17-0.31 ng/L 17-ß-estradiol) indicated a low estrogenicity likelihood for contaminants extracted from water. Findings point to low levels of polar and non-polar organic contaminants in the bays sampled within VICR and VIIS.


Subject(s)
Coral Reefs , Environmental Monitoring , Water Pollutants, Chemical/analysis , Conservation of Natural Resources , Seawater/chemistry , United States Virgin Islands , Water Pollution, Chemical/statistics & numerical data
4.
Rev. biol. trop ; 60(supl.1): 59-70, Mar. 2012. ilus, graf, mapas, tab
Article in English | LILACS, SaludCR | ID: lil-657854

ABSTRACT

In response to dramatic losses of reef-building corals and ongoing lack of recovery, a small-scale coral transplant project was initiated in the Caribbean (U.S. Virgin Islands) in 1999 and was followed for 12 years. The primary objectives were to (1) identify a source of coral colonies for transplantation that would not result in damage to reefs, (2) test the feasibility of transplanting storm-generated coral fragments, and (3) develop a simple, inexpensive method for transplanting fragments that could be conducted by the local community. The ultimate goal was to enhance abundance of threatened reef-building species on local reefs. Storm-produced coral fragments of two threatened reef-building species [Acropora palmata and A. cervicornis (Acroporidae)] and another fast-growing species [Porites porites (Poritidae)] were collected from environments hostile to coral fragment survival and transplanted to degraded reefs. Inert nylon cable ties were used to attach transplanted coral fragments to dead coral substrate. Survival of 75 reference colonies and 60 transplants was assessed over 12 years. Only 9% of colonies were alive after 12 years: no A. cervicornis; 3% of A. palmata transplants and 18% of reference colonies; and 13% of P. porites transplants and 7% of reference colonies. Mortality rates for all species were high and were similar for transplant and reference colonies. Physical dislodgement resulted in the loss of 56% of colonies, whereas 35% died in place. Only A. palmata showed a difference between transplant and reference colony survival and that was in the first year only. Location was a factor in survival only for A. palmata reference colonies and after year 10. Even though the tested methods and concepts were proven effective in the field over the 12-year study, they do not present a solution. No coral conservation strategy will be effective until underlying intrinsic and/or extrinsic factors driving high mortality rates are understood and mitigated or eliminated. Rev. Biol. Trop. 60 (Suppl. 1): 59-70. Epub 2012 March 01.


En respuesta a la dramática pérdida de corales constructores de arrecifes y la continua falta de recuperación, un proyecto de pequeña escala de transplante de corales, al cual se le dio seguimiento por 12 años, se inició en el Caribe (Islas Vírgenes de EUA) en 1999. Los principales objetivos fueron (1) identificar fuentes de colonias de coral para el trasplante, que no produjeran daños a los arrecifes, (2) evaluar la viabilidad del trasplante de fragmentos de coral generados por tormentas, y (3) desarrollar un método simple y barato para transplantar fragmentos que pudiera ser realizado por la comunidad local. La meta última era aumentar la abundancia de especies constructoras de arrecife amenazadas en los arrecifes locales. Fragmentos de coral producidos por tormenta de dos especies constructoras de arrecife amenazadas [Acropora palmata y A. cervicornis (Acroporidae)] y otras especies de crecimiento rápido [Porites porites (Poritidae)] fueron recolectadas en ambientes no adecuados para la supervivencia de fragmentos de coral y se trasplantaron a los arrecifes degradados. Fajitas de nylon inerte fueron utilizadas para unir los fragmentos de corales transplantados al sustrato de coral muerto. La sobrevivencia de 75 colonias de referencia y de 60 transplantadas fueron monitoreadas por más de 12 años. Sólo el 9% de las colonias estaban vivas tras 12 años, sin presencia de A. cervicornis, el 3% de los transplantes de A. palmata y el 18% de las colonias de referencia de Acropora. El 13% de los transplantes de P. porites y el 7% de las colonias de referencia sobrevivieron. El desprendimiento físico resultó en la pérdida del 56% de las colonias, mientras que el 35% murió en el lugar. Solamente A. palmata mostró una diferencia en sobrevivencia entre los trasplantes y las colonias de referencia, eso fue solo en el primer año. La ubicación fue un factor en la sobrevivencia sólo para las colonias de referencia de A. palmata y después de 10 años. A pesar de que los métodos y los conceptos fueron probados efectivamente en el campo por más de 12 años de estudio, no mostraron ser la solución. Ninguna estrategia de conservación va a ser efectiva hasta que se delimiten y sean entendidos, mitigados o eliminados los factores intrínsecos y/o extrínsecos que conducen a las altas tasas de mortalidad.


Subject(s)
Transplantation , United States Virgin Islands , Anthozoa/embryology , Coral Reefs , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...