Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Rev Neurosci ; 24(3): 134-152, 2023 03.
Article in English | MEDLINE | ID: mdl-36653531

ABSTRACT

The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviours and are linked to various brain diseases. Considerable progress has been made in identifying mDA neuron subtypes, and recent work has begun to unveil how these neuronal subtypes develop and organize into functional brain structures. This progress is important for further understanding the disparate physiological functions of mDA neurons and their selective vulnerability in disease, and will ultimately accelerate therapy development. This Review discusses recent advances in our understanding of molecularly defined mDA neuron subtypes and their circuits, ranging from early developmental events, such as neuron migration and axon guidance, to their wiring and function, and future implications for therapeutic strategies.


Subject(s)
Brain Diseases , Dopaminergic Neurons , Humans , Dopaminergic Neurons/physiology , Mesencephalon , Brain , Dopamine
2.
Cell Rep ; 40(1): 111029, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35793630

ABSTRACT

The habenula plays a key role in various motivated and pathological behaviors and is composed of molecularly distinct neuron subtypes. Despite progress in identifying mature habenula neuron subtypes, how these subtypes develop and organize into functional brain circuits remains largely unknown. Here, we performed single-cell transcriptional profiling of mouse habenular neurons at critical developmental stages, instructed by detailed three-dimensional anatomical data. Our data reveal cellular and molecular trajectories during embryonic and postnatal development, leading to different habenular subtypes. Further, based on this analysis, our work establishes the distinctive functional properties and projection target of a subtype of Cartpt+ habenula neurons. Finally, we show how comparison of single-cell transcriptional profiles and GWAS data links specific developing habenular subtypes to psychiatric disease. Together, our study begins to dissect the mechanisms underlying habenula neuron subtype-specific development and creates a framework for further interrogation of habenular development in normal and disease states.


Subject(s)
Habenula , Animals , Habenula/physiology , Mice , Neurogenesis/genetics , Neurons
SELECTION OF CITATIONS
SEARCH DETAIL
...