Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 44(15): 7048-57, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25785817

ABSTRACT

Weakly coordinating anions (WCAs) with the difluorophosphato ligand (O2PF2) were the target of this study. Initial experiments were conducted towards the preparation of homoleptic aluminates of the well-studied [Al(OR)4](-)-type. The preparation of the initial target structure Li[Al(O2PF2)4] failed due to the remaining Lewis acidic character of the central aluminum atom. Instead, the formation of Li3[Al(O2PF2)6] and Al(O2PF2)3 was observed with hexacoordinate aluminum atoms and verified by NMR, IR and X-ray crystallography. A possible mechanism towards these compounds was postulated in the solvent induced dismutation of the tetracoordinate Li[Al(O2PF2)4]. A singly charged WCA was realized by the exchange of the central aluminum atom for boron. The [B(O2PF2)4](-) anion was prepared starting from BH3·S(CH3)2 and boron tribromide leading to the protic room temperature Ionic Liquid (IL) [H(S(CH3)2)][B(O2PF2)4] and the neat liquid Brønsted acid H[B(O2PF2)4], respectively, representing a significantly improved synthesis with regard to the first experiments of Dove et al. The basicity of the [B(O2PF2)4](-) anion and its WCA quality were investigated on the basis of the IR-spectroscopic NH-scale and the salt [H(N(Oct)3)][B(O2PF2)4] that places it better than all oxyanions and close to the carboranate based WCAs. A pathway to the solvent free pure Li[B(O2PF2)4] salt was established on a multi-gram scale with excellent purities enabling electrochemical applications (verified by NMR, IR, X-ray crystallography and cyclovoltammetry).

2.
Angew Chem Int Ed Engl ; 54(13): 3907-11, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25650042

ABSTRACT

Lithium-sulfur batteries are amongst the most promising candidates to satisfy emerging energy-storage demands. Suppression of the polysulfide shuttle while maintaining high sulfur content is the main challenge that faces their practical development. Here, we report that 2D early-transition-metal carbide conductive MXene phases-reported to be impressive supercapacitor materials-also perform as excellent sulfur battery hosts owing to their inherently high underlying metallic conductivity and self-functionalized surfaces. We show that 70 wt % S/Ti2 C composites exhibit stable long-term cycling performance because of strong interaction of the polysulfide species with the surface Ti atoms, demonstrated by X-ray photoelectron spectroscopy studies. The cathodes show excellent cycling performance with specific capacity close to 1200 mA h g(-1) at a five-hour charge/discharge (C/5) current rate. Capacity retention of 80 % is achieved over 400 cycles at a two-hour charge/discharge (C/2) current rate.

3.
Chem Commun (Camb) ; 51(12): 2308-11, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25562067

ABSTRACT

A versatile, cost-effective electrochemical analysis strategy is described that determines the specific S(n)(2-) adsorptivity of materials, and allows prediction of the long-term performance of sulphur composite electrodes in Li-S cells. Measurement of nine different materials with varying surface area, and hydrophobicity using this protocol determined optimum properties for capacity stabilization.

4.
Nat Commun ; 6: 5682, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25562485

ABSTRACT

The lithium-sulfur battery is receiving intense interest because its theoretical energy density exceeds that of lithium-ion batteries at much lower cost, but practical applications are still hindered by capacity decay caused by the polysulfide shuttle. Here we report a strategy to entrap polysulfides in the cathode that relies on a chemical process, whereby a host--manganese dioxide nanosheets serve as the prototype--reacts with initially formed lithium polysulfides to form surface-bound intermediates. These function as a redox shuttle to catenate and bind 'higher' polysulfides, and convert them on reduction to insoluble lithium sulfide via disproportionation. The sulfur/manganese dioxide nanosheet composite with 75 wt% sulfur exhibits a reversible capacity of 1,300 mA h g(-1) at moderate rates and a fade rate over 2,000 cycles of 0.036%/cycle, among the best reported to date. We furthermore show that this mechanism extends to graphene oxide and suggest it can be employed more widely.

5.
Chemphyschem ; 16(3): 666-75, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25521464

ABSTRACT

A new Li salt with views to success in electrolytes is synthesized in excellent yields from lithium borohydride with excess 2,2,2-trifluorethanol (HOTfe) in toluene and at least two equivalents of 1,2-dimethoxyethane (DME). The salt Li[B(OTfe)4 ] is obtained in multigram scale without impurities, as long as DME is present during the reaction. It is characterized by heteronuclear magnetic resonance and vibrational spectroscopy (IR and Raman), has high thermal stability (Tdecomposition >271 °C, DSC) and shows long-term stability in water. The concentration-dependent electrical conductivity of Li[B(OTfe)4 ] is measured in water, acetone, EC/DMC, EC/DMC/DME, ethyl acetate and THF at RT In DME (0.8 mol L(-1) ) it is 3.9 mS cm(-1) , which is satisfactory for the use in lithium-sulfur batteries (LiSB). Cyclic voltammetry confirms the electrochemical stability of Li[B(OTfe)4 ] in a potential range of 0 to 4.8 V vs. Li/Li(+) . The performance of Li[B(OTfe)4 ] as conducting salt in a 0.2 mol L(-1) solution in 1:1 wt % DME/DOL is investigated in LiSB test cells. After the 40th cycle, 86 % of the capacity remains, with a coulombic efficiency of around 97 % for each cycle. This indicates a considerable performance improvement for LiSB, if compared to the standard Li[NTf2 ]/DOL/DME electrolyte system.

6.
J Am Chem Soc ; 136(42): 15054-64, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25255228

ABSTRACT

Nonaqueous Li-O2 batteries are an intensively studied future energy storage technology because of their high theoretical energy density. However, a number of barriers prevent a practical application, and one of the major challenges is the reduction of the high charge overpotential: Whereas lithium peroxide (Li2O2) is formed during discharge at around 2.7 V (vs Li(+)/Li), its electrochemical decomposition during the charge process requires potentials up to 4.5 V. This high potential gap leads to a low round-trip efficiency of the cell, and more importantly, the high charge potential causes electrochemical decomposition of other cell constituents. Dissolved oxidation catalysts can act as mobile redox mediators (RM), which enable the oxidation of Li2O2 particles even without a direct electric contact to the positive electrode. Herein we show that the addition of 10 mM TEMPO (2,2,6,6-tetramethylpiperidinyloxyl), homogeneously dissolved in the electrolyte, provides a distinct reduction of the charging potentials by 500 mV. Moreover, TEMPO enables a significant enhancement of the cycling stability leading to a doubling of the cycle life. The efficiency of the TEMPO mediated catalysis was further investigated by a parallel monitoring of the cell pressure, which excludes a considerable contribution of a parasitic shuttle (i.e., internal ionic short circuit) to the anode during cycling. We prove the suitability of TEMPO by a systematic study of the relevant physical and chemical properties, i.e., its (electro)chemical stability, redox potential, diffusion coefficient and the influence on the oxygen solubility. Furthermore, the charging mechanisms of Li-O2 cells with and without TEMPO were compared by combining different electrochemical and analytical techniques.

7.
Langmuir ; 30(25): 7414-24, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24885475

ABSTRACT

The effect of fluorinated ethylene carbonate (FEC) as a cosolvent in alkyl carbonates/LiPF6 on the cycling performance of high-voltage (5 V) cathodes for Li-ion batteries was investigated using electrochemical tools, X-ray photoelectron spectroscopy (XPS), and high-resolution scanning electron microscopy (HRSEM). An excellent cycling stability of LiCoPO4/Li, LiNi0.5Mn1.5O4/Si, and LiCoPO4/Si cells and a reasonable cycling of LiCoPO4/Si cells was achieved by replacing the commonly used cosolvent ethylene carbonate (EC) by FEC in electrolyte solutions for high-voltage Li-ion batteries. The roles of FEC in the improvement of the cycling performance of high-voltage Li-ion cells and of surface chemistry on the cathode are discussed.

8.
ACS Appl Mater Interfaces ; 6(14): 10917-23, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24797820

ABSTRACT

We report the synthesis of a low-cost carbon/sulfur nanocomposite using Ketjen black (KBC) as the carbon framework, encapsulated by thin graphene sheets using a simple process that relies on binding a functionalized KBC/S nanoparticle surface with graphene oxide (GO), which is reduced in situ. A slight excess of GO is employed to create a second layer of graphene wrapping around the KBC/S. This g-KBC/S sulfur cathode exhibits excellent cyclability over 200 cycles where the average stabilized fade rate is only 0.026% or 1.1 mAh g(-1) per cycle. This excellent performance is primarily attributed to the wrapped, internally porous architecture. The large pore volume, small pore diameter, and uniform nanoparticle size of the mesoporous KBC array provides an ideal frame for the fabrication of a homogeneous C/S composite, whereas the graphene/GO sheets serve as an external chemical and physical barrier that inhibits polysulfide diffusion.

9.
Chem Commun (Camb) ; 50(28): 3677-80, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24514951

ABSTRACT

New electrode materials of layered oxides, Na2/3Ni1/3Mn2/3-xTixO2 (0 ≤ x ≤ 2/3), are successfully synthesized, and their electrochemical performance is examined in aprotic Na cells. A Na//Na2/3Ni1/3Mn1/2Ti1/6O2 cell delivers 127 mA h g(-1) of reversible capacity and the average voltage reaches 3.7 V at first discharge with good capacity retention.

10.
J Phys Chem Lett ; 5(5): 915-8, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-26274088

ABSTRACT

The development of Li2S electrodes is a crucial step toward industrial manufacturing of Li-S batteries, a promising alternative to Li-ion batteries due to their projected two times higher specific capacity. However, the high voltages needed to activate Li2S electrodes, and the consequent electrolyte solution degradation, represent the main challenge. We present a novel concept that could make feasible the widespread application of Li2S electrodes for Li-S cell assembly. In this concept, the addition of redox mediators as additives to the standard electrolyte solution allows us to recover most of Li2S theoretical capacity in the activation cycle at potentials as low as 2.9 VLi, substantially lower than the typical potentials >4 VLi needed with standard electrolyte solution. Those novel additives permit us to preserve the electrolyte solution from being degraded, allowing us to achieve capacity as high as 500 mAhg(-1)Li2S after 150 cycles with no major structural optimization of the electrodes.

11.
ACS Nano ; 7(12): 10920-30, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24229005

ABSTRACT

Porous hollow carbon spheres with different tailored pore structures have been designed as conducting frameworks for lithium-sulfur battery cathode materials that exhibit stable cycling capacity. By deliberately creating shell porosity and utilizing the interior void volume of the carbon spheres, sufficient space for sulfur storage as well as electrolyte pathways is guaranteed. The effect of different approaches to develop shell porosity is examined and compared in this study. The most highly optimized sulfur-porous carbon nanosphere composite, created using pore-formers to tailor shell porosity, exhibits excellent cycling performance and rate capability. Sulfur is primarily confined in 4-5 nm mesopores in the carbon shell and inner lining of the shells, which is beneficial for enhancing charge transfer and accommodating volume expansion of sulfur during redox cycling. Little capacity degradation (∼0.1% /cycle) is observed over 100 cycles for the optimized material.

12.
Nat Mater ; 12(3): 228-32, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23202372

ABSTRACT

In the search for room-temperature batteries with high energy densities, rechargeable metal-air (more precisely metal-oxygen) batteries are considered as particularly attractive owing to the simplicity of the underlying cell reaction at first glance. Atmospheric oxygen is used to form oxides during discharging, which-ideally-decompose reversibly during charging. Much work has been focused on aprotic Li-O(2) cells (mostly with carbonate-based electrolytes and Li(2)O(2) as a potential discharge product), where large overpotentials are observed and a complex cell chemistry is found. In fact, recent studies evidence that Li-O(2) cells suffer from irreversible electrolyte decomposition during cycling. Here we report on a Na-O(2) cell reversibly discharging/charging at very low overpotentials (< 200 mV) and current densities as high as 0.2 mA cm(-2) using a pure carbon cathode without an added catalyst. Crystalline sodium superoxide (NaO(2)) forms in a one-electron transfer step as a solid discharge product. This work demonstrates that substitution of lithium by sodium may offer an unexpected route towards rechargeable metal-air batteries.

13.
J Phys Chem Lett ; 4(1): 127-31, 2013 Jan 03.
Article in English | MEDLINE | ID: mdl-26291224

ABSTRACT

Polyether solvents are considered interesting and important candidates for Li-O2 battery systems. Discharge of Li-O2 battery systems forms Li oxides. Their mechanism of formation is complex. The stability of most relevant polar aprotic solvents toward these Li oxides is questionable. Specially high surface area carbon electrodes were developed for the present work. In this study, several spectroscopic tools and in situ measurements using electrochemical quartz crystal microbalance (EQCM) were employed to explore the discharge-charge processes and related side reactions in Li-O2 battery systems containing electrolyte solutions based on triglyme/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte solutions. The systematic mechanism of lithium oxides formation was monitored. A combination of Fourier transform infrared (FTIR), NMR, and matrix-assisted laser desorption/ionization (MALDI) measurements in conjunction with electrochemical studies demonstrated the intrinsic instability and incompatibility of polyether solvents for Li-air batteries.

14.
Chimia (Aarau) ; 67(10): 719-23, 2013.
Article in English | MEDLINE | ID: mdl-24388137

ABSTRACT

This article describes the synthesis and characterization of a novel crosslinked polymer with tricyanuric acid core bearing tetrasulfide bridges as a novel redox polymerization electrode material for rechargeable lithium-sulfur batteries. The new material was synthesized by reaction of stoichiometric sulfur monochloride amounts with trithiocyanuric acid and the structure of the redox polymer proven by the means of elementary analysis, infrared spectroscopy and Raman spectroscopy. Electrochemical evaluation of the polymer as electroactive cathode component showed cycling stability up to 140 cycles after initial capacity of 650 mAhg(-1) with 73% utilization of the theoretical specific capacity (893 mAhg(-1)) regarding the electroactive tetrasulfide moieties. Cell operation with excess amounts of electrolyte did not accelerate the cell degradation, indicating that the reduced sulfur species such as lower polysulfides (Li2S, Li2S2) and tris lithium salt of trithiocyanuric acid are efficiently immobilized on the cathode side.

15.
Adv Mater ; 23(47): 5641-4, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22052740

ABSTRACT

A route for the preparation of binder-free sulfur-carbon cathodes is developed for lithium sulfur batteries. The method is based on the impregnation of elemental sulfur into the micropores of activated carbon fibers. These electrodes demonstrate good electrochemical performance at high current density attributed to the uniform dispersion of sulfur inside the carbon fiber.


Subject(s)
Carbon/chemistry , Electric Power Supplies , Lithium/chemistry , Nanotechnology/methods , Sulfur/chemistry , Carbon Fiber , Electrochemistry , Electrodes , Nanotechnology/instrumentation
16.
ACS Appl Mater Interfaces ; 1(8): 1623-39, 2009 Aug.
Article in English | MEDLINE | ID: mdl-20355776

ABSTRACT

Nine non-noble-metal catalysts (NNMCs) from five different laboratories were investigated for the catalysis of O(2) electroreduction in an acidic medium. The catalyst precursors were synthesized by wet impregnation, planetary ball milling, a foaming-agent technique, or a templating method. All catalyst precursors were subjected to one or more heat treatments at 700-1050 degrees C in an inert or reactive atmosphere. These catalysts underwent an identical set of electrochemical characterizations, including rotating-disk-electrode and polymer-electrolyte membrane fuel cell (PEMFC) tests and voltammetry under N(2). Ex situ characterization was comprised of X-ray photoelectron spectroscopy, neutron activation analysis, scanning electron microscopy, and N(2) adsorption and its analysis with an advanced model for carbonaceous powders. In PEMFC, several NNMCs display mass activities of 10-20 A g(-1) at 0.8 V versus a reversible hydrogen electrode, and one shows 80 A g(-1). The latter value corresponds to a volumetric activity of 19 A cm(-3) under reference conditions and represents one-seventh of the target defined by the U.S. Department of Energy for 2010 (130 A cm(-3)). The activity of all NNMCs is mainly governed by the microporous surface area, and active sites seem to be hosted in pore sizes of 5-15 A. The nitrogen and metal (iron or cobalt) seem to be present in sufficient amounts in the NNMCs and do not limit activity. The paper discusses probable directions for synthesizing more active NNMCs. This could be achieved through multiple pyrolysis steps, ball-milling steps, and control of the powder morphology by the addition of foaming agents and/or sulfur.


Subject(s)
Electrochemistry/methods , Oxygen/chemistry , Polymers/chemistry , Catalysis , Chemistry/methods , Electrodes , Electrolytes , Hydrogen-Ion Concentration , Materials Testing , Models, Statistical , Photoelectron Spectroscopy/methods , Porosity , Powders/chemistry , Surface Properties
17.
SELECTION OF CITATIONS
SEARCH DETAIL
...