Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Hear Res ; 447: 109009, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670009

ABSTRACT

We recently reported that the central nucleus of the inferior colliculus (the auditory midbrain) is innervated by glutamatergic pyramidal cells originating not only in auditory cortex (AC), but also in multiple 'non-auditory' regions of the cerebral cortex. Here, in anaesthetised rats, we used optogenetics and electrical stimulation, combined with recording in the inferior colliculus to determine the functional influence of these descending connections. Specifically, we determined the extent of monosynaptic excitation and the influence of these descending connections on spontaneous activity in the inferior colliculus. A retrograde virus encoding both green fluorescent protein (GFP) and channelrhodopsin (ChR2) injected into the central nucleus of the inferior colliculus (ICc) resulted in GFP expression in discrete groups of cells in multiple areas of the cerebral cortex. Light stimulation of AC and primary motor cortex (M1) caused local activation of cortical neurones and increased the firing rate of neurones in ICc indicating a direct excitatory input from AC and M1 to ICc with a restricted distribution. In naïve animals, electrical stimulation at multiple different sites within M1, secondary motor, somatosensory, and prefrontal cortices increased firing rate in ICc. However, it was notable that stimulation at some adjacent sites failed to influence firing at the recording site in ICc. Responses in ICc comprised singular spikes of constant shape and size which occurred with a short, and fixed latency (∼ 5 ms) consistent with monosynaptic excitation of individual ICc units. Increasing the stimulus current decreased the latency of these spikes, suggesting more rapid depolarization of cortical neurones, and increased the number of (usually adjacent) channels on which a monosynaptic spike was seen, suggesting recruitment of increasing numbers of cortical neurons. Electrical stimulation of cortical regions also evoked longer latency, longer duration increases in firing activity, comprising multiple units with spikes occurring with significant temporal jitter, consistent with polysynaptic excitation. Increasing the stimulus current increased the number of spikes in these polysynaptic responses and increased the number of channels on which the responses were observed, although the magnitude of the responses always diminished away from the most activated channels. Together our findings indicate descending connections from motor, somatosensory and executive cortical regions directly activate small numbers of ICc neurones and that this in turn leads to extensive polysynaptic activation of local circuits within the ICc.


Subject(s)
Auditory Cortex , Auditory Pathways , Electric Stimulation , Inferior Colliculi , Motor Cortex , Optogenetics , Somatosensory Cortex , Synapses , Animals , Inferior Colliculi/physiology , Somatosensory Cortex/physiology , Auditory Cortex/physiology , Motor Cortex/physiology , Auditory Pathways/physiology , Synapses/physiology , Male , Neurons/physiology , Rats, Sprague-Dawley , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Female , Channelrhodopsins/metabolism , Channelrhodopsins/genetics , Rats
2.
Hear Res ; 424: 108585, 2022 10.
Article in English | MEDLINE | ID: mdl-35926306

ABSTRACT

The anti-inflammatory drug salicylate induces tinnitus in animals and man. Salicylate reduces cochlear output but causes hyperactivity in higher auditory centres, including the inferior colliculus (the auditory midbrain). Using multi-electrode recording in anaesthetised guinea pigs (Cavia porcellus), we addressed the hypothesis that salicylate-induced hyperactivity in the inferior colliculus involves nitric oxide signalling secondary to increased ascending excitatory input. Systemic salicylate (200 mg/kg i.p., 0 h) markedly increased spontaneous and sound-driven neuronal firing in the inferior colliculus (3-6 h post drug), with both onset and sustained responses to pure tones being massively increased. Reverse microdialysis of increasing concentrations of salicylate directly into the inferior colliculus (100 µM-10 mM, from 0 h) failed to mimic systemic salicylate. In contrast, it caused a small, transient, increase in sound-driven firing (1 h), followed by a larger sustained decrease in both spontaneous and sound-driven firing (2-5 h). When salicylate was given systemically, reverse microdialysis of the neuronal nitric oxide synthase inhibitor L-methyl arginine into the inferior colliculus (500 mM, 2-6 h) completely blocked the salicylate-induced increase in spontaneous and sound-driven neuronal firing. Our data indicate that systemic salicylate induces neuronal hyperactivity in the auditory midbrain via a mechanism outside the inferior colliculus, presumably upstream in the auditory pathway; and that the mechanism is ultimately dependent on nitric oxide signalling within the inferior colliculus. Given that nitric oxide is known to mediate NMDA receptor signalling in the inferior colliculus, we propose that salicylate activates an ascending glutamatergic input to the inferior colliculus and that this is an important mechanism underlying salicylate-induced tinnitus.


Subject(s)
Inferior Colliculi , Tinnitus , Animals , Arginine/metabolism , Guinea Pigs , Humans , Inferior Colliculi/physiology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/metabolism , Receptors, N-Methyl-D-Aspartate , Salicylates/metabolism , Salicylates/toxicity , Tinnitus/etiology
3.
Eur J Neurosci ; 51(9): 1881-1899, 2020 05.
Article in English | MEDLINE | ID: mdl-32115781

ABSTRACT

Neuronal nitric oxide synthase (nNOS) catalyses the production of the neurotransmitter nitric oxide. nNOS is expressed in the dorsal raphe nucleus (DRN), a source of ascending serotonergic projections. In this study, we examined the distribution nNOS and the function of nitric oxide in the DRN and adjacent median raphe nucleus (MRN) of the rat. We hypothesized that nNOS is differentially expressed across the raphe nuclei and that nitric oxide influences the firing activity of a subgroup of 5-HT neurons. Immunohistochemistry revealed that, nNOS is present in around 40% of 5-HT neurons, throughout the DRN and MRN, as well as in some non-5-HT neurons immediately adjacent to the DRN and MRN. The nitric oxide receptor, soluble guanylyl cyclase, was present in all 5-HT neurons examined in the DRN and MRN. In vitro extracellular electrophysiology revealed that application of the nitric oxide donor, diethylamine NONOate (30-300 µM) inhibited 60%-70% of putative 5-HT neurons, excited approximately 10% of putative 5-HT neurons and had no effect on the rest. The inhibitory response to nitric oxide was blocked by [1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one (ODQ, 30 or 100 µM), indicating mediation by soluble guanylyl cyclase. Juxtacellular labelling revealed that nitric oxide inhibits firing in both putative 5-HT neurons which express nNOS and those which do not express nNOS. Our data are consistent with the notion that nitric oxide acts as both a trans-synaptic and autocrine signaller in 5-HT neurons in the DRN and MRN and that its effects are widespread and primarily inhibitory.


Subject(s)
Nitric Oxide , Serotonin , Animals , Dorsal Raphe Nucleus , Midbrain Raphe Nuclei , Neurons , Rats
4.
Eur J Neurosci ; 52(2): 2915-2930, 2020 07.
Article in English | MEDLINE | ID: mdl-31891427

ABSTRACT

The role of dopamine in regulating sleep-state transitions during, both natural sleep and under anaesthesia, is still unclear. Recording in vivo in the rat mPFC under urethane anaesthesia, we observed predominantly slow wave activity (SWA) of <1 Hz in the local field potential interrupted by occasional spontaneous transitions to a low-amplitude-fast (LAF) pattern of activity. During periods of SWA, transitions to LAF activity could be rapidly and consistently evoked by electrical stimulation of the ventral tegmental area (VTA). Spontaneous LAF activity, and that evoked by stimulation of the VTA, consisted of fast oscillations similar to those seen in the rapid eye movement (REM)-like sleep state. Spontaneous and VTA stimulation-evoked LAF activity occurred simultaneously along the dorsoventral extent of all mPFC subregions. Evoked LAF activity depended on VTA stimulation current and could be elicited using either regular (25-50 Hz) or burst stimulation patterns and was reproducible upon repeated stimulation. Simultaneous extracellular single-unit recordings showed that during SWA, presumed pyramidal cells fired phasically and almost exclusively on the Up state, while during both spontaneous and VTA-evoked LAF activity, they fired tonically. The transition to LAF activity evoked by VTA stimulation depended on dopamine D1 -like receptor activation as it was almost completely blocked by systemic administration of the D1 -like receptor antagonist SCH23390. Overall, our data demonstrate that activation of dopamine D1 -like receptors in the mPFC is important for regulating sleep-like state transitions.


Subject(s)
Anesthesia , Ventral Tegmental Area , Animals , Dopamine , Electric Stimulation , Prefrontal Cortex , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D1 , Sleep , Urethane/pharmacology
5.
J Neurosci ; 39(45): 8916-8928, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31541020

ABSTRACT

Our perceptual experience of sound depends on the integration of multiple sensory and cognitive domains, however the networks subserving this integration are unclear. Connections linking different cortical domains have been described, but we do not know the extent to which connections also exist between multiple cortical domains and subcortical structures. Retrograde tracing in adult male rats (Rattus norvegicus) revealed that the inferior colliculus, the auditory midbrain, receives dense descending projections not only, as previously established, from the auditory cortex, but also from the visual, somatosensory, motor, and prefrontal cortices. While all these descending connections are bilateral, those from sensory areas show a more pronounced ipsilateral dominance than those from motor and prefrontal cortices. Injections of anterograde tracers into the cortical areas identified by retrograde tracing confirmed those findings and revealed cortical fibers terminating in all three subdivisions of the inferior colliculus. Immunolabeling showed that cortical terminals target both GABAergic inhibitory, and putative glutamatergic excitatory neurons. These findings demonstrate that auditory perception and behavior are served by a network that includes extensive descending connections to the midbrain from sensory, behavioral, and executive cortices.SIGNIFICANCE STATEMENT Making sense of what we hear depends not only on the analysis of sound, but also on information from other senses together with the brain's predictions about the properties and significance of the sound. Previous work suggested that this interplay between the senses and the predictions from higher cognitive centers occurs within the cerebral cortex. By tracing neural connections in rat, we show that the inferior colliculus, the subcortical, midbrain center for hearing, receives extensive connections from areas of the cerebral cortex concerned with vision, touch, movement, and cognitive function, in addition to areas representing hearing. These findings demonstrate that wide-ranging cortical feedback operates at an earlier stage of the hearing pathway than previously recognized.


Subject(s)
Auditory Pathways/cytology , Mesencephalon/physiology , Sensorimotor Cortex/physiology , Animals , Auditory Pathways/physiology , Evoked Potentials, Auditory, Brain Stem , Male , Mesencephalon/cytology , Neuroanatomical Tract-Tracing Techniques , Neurons/classification , Neurons/physiology , Rats , Sensorimotor Cortex/cytology
6.
J Neurosci ; 39(5): 876-887, 2019 01 30.
Article in English | MEDLINE | ID: mdl-30530507

ABSTRACT

Nitric oxide (NO) is a neurotransmitter synthesized in the brain by neuronal nitric oxide synthase (nNOS). Using immunohistochemistry and confocal imaging in the inferior colliculus (IC, auditory midbrain) of the guinea pig (Cavia porcellus, male and female), we show that nNOS occurs in two distinct cellular distributions. We confirm that, in the cortices of the IC, a subset of neurons show cytoplasmic labeling for nNOS, whereas in the central nucleus (ICc), such neurons are not present. However, we demonstrate that all neurons in the ICc do in fact express nNOS in the form of discrete puncta found at the cell membrane. Our multi-labeling studies reveal that nNOS puncta form multiprotein complexes with NMDA receptors, soluble guanylyl cyclase (sGC), and PSD95. These complexes are found apposed to glutamatergic terminals, which is indicative of synaptic function. Interestingly, these glutamatergic terminals express both vesicular glutamate transporters 1 and 2 denoting a specific source of brainstem inputs. With in vivo electrophysiological recordings of multiunit activity in the ICc, we found that local application of NMDA enhances sound-driven activity in a concentration-dependent and reversible fashion. This response is abolished by blockade of nNOS or sGC, indicating that the NMDA effect is mediated solely via the NO and cGMP signaling pathway. This discovery of a ubiquitous, but highly localized, expression of nNOS throughout the ICc and demonstration of the dramatic influence of the NMDA activated NO pathway on sound-driven neuronal activity imply a key role for NO signaling in auditory processing.SIGNIFICANCE STATEMENT We show that neuronal nitric oxide synthase (nNOS), the enzyme that synthesizes nitric oxide (NO), occurs as puncta in apparently all neurons in the central nucleus of the inferior colliculus (ICc) in the auditory midbrain. Punctate nNOS appears at glutamatergic synapses in a complex with glutamate NMDA receptors (NMDA-Rs), soluble guanylyl cyclase (sGC, the NO receptor), and PSD95 (a protein that anchors receptors and enzymes at the postsynaptic density). We show that NMDA-R modulation of sound-driven activity in the ICc is solely mediated by activation of nNOS and sGC. The presence of nNOS throughout this sensory nucleus argues for a major role of NO in hearing. Furthermore, this punctate form of nNOS expression may exist and have gone unnoticed in other brain regions.


Subject(s)
Auditory Cortex/physiology , Mesencephalon/physiology , Nitric Oxide Synthase Type I/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Signal Transduction/physiology , Animals , Auditory Perception/physiology , Cyclic GMP/physiology , Disks Large Homolog 4 Protein/physiology , Female , Guinea Pigs , Inferior Colliculi/cytology , Inferior Colliculi/physiology , Male , Nitric Oxide/physiology , Nitric Oxide Synthase Type I/metabolism , Soluble Guanylyl Cyclase/metabolism , Synapses/physiology , Vesicular Glutamate Transport Proteins/metabolism
7.
J Neurophysiol ; 117(3): 1126-1142, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28003411

ABSTRACT

Cortical slow oscillations (0.1-1 Hz), which may play a role in memory consolidation, are a hallmark of non-rapid eye movement (NREM) sleep and also occur under anesthesia. During slow oscillations the neuronal network generates faster oscillations on the active Up-states and these nested oscillations are particularly prominent in the PFC. In rodents the medial prefrontal cortex (mPFC) consists of several subregions: anterior cingulate cortex (ACC), prelimbic (PrL), infralimbic (IL), and dorsal peduncular cortices (DP). Although each region has a distinct anatomy and function, it is not known whether slow or fast network oscillations differ between subregions in vivo. We have simultaneously recorded slow and fast network oscillations in all four subregions of the rodent mPFC under urethane anesthesia. Slow oscillations were synchronous between the mPFC subregions, and across the hemispheres, with no consistent amplitude difference between subregions. Delta (2-4 Hz) activity showed only small differences between subregions. However, oscillations in the spindle (6-15 Hz)-, beta (20-30 Hz), gamma (30-80 Hz)-, and high-gamma (80-150 Hz)-frequency bands were consistently larger in the dorsal regions (ACC and PrL) compared with ventral regions (IL and DP). In dorsal regions the peak power of spindle, beta, and gamma activity occurred early after onset of the Up-state. In the ventral regions, especially the DP, the oscillatory power in the spindle-, beta-, and gamma-frequency ranges peaked later in the Up-state. These results suggest variations in fast network oscillations within the mPFC that may reflect the different functions and connectivity of these subregions.NEW & NOTEWORTHY We demonstrate, in the urethane-anesthetized rat, that within the medial prefrontal cortex (mPFC) there are clear subregional differences in the fast network oscillations associated with the slow oscillation Up-state. These differences, particularly between the dorsal and ventral subregions of the mPFC, may reflect the different functions and connectivity of these subregions.


Subject(s)
Anesthetics, Intravenous/pharmacology , Cortical Synchronization/drug effects , Prefrontal Cortex/anatomy & histology , Prefrontal Cortex/drug effects , Urethane/pharmacology , Animals , Carbocyanines/pharmacokinetics , Cortical Synchronization/physiology , Electroencephalography , Male , Rats , Statistics, Nonparametric
8.
Chem Biol Interact ; 245: 82-9, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26721196

ABSTRACT

The neurotransmitter serotonin (5-HT) is involved in mood disorder aetiology and it has been reported that (organophosphate) OP exposure affects 5-HT turnover. The aim of this study was to elucidate the mechanism underlying OP effects on the adult 5-HT system. First, acute in vivo administration of the OP diazinon (0, 1.3, 13 or 39 mg/kg i.p.) to male Hooded Lister rats inhibited the activity of the cholinergic enzyme acetylcholinesterase in blood and in the hippocampus, dorsal raphe nucleus (DRN), striatum and prefrontal cortex. Diazinon-induced cholinesterase inhibition was greatest in the DRN, the brain's major source of 5-HT neurones. Second, acute in vivo diazinon exposure (0 or 39 mg/kg i.p.) increased the basal firing rate of DRN neurones measured ex vivo in brain slices. The excitatory responses of DRN neurones to α1-adrenoceptor or AMPA/kainate receptor activation were not affected by in vivo diazinon exposure but the inhibitory response to 5-HT was attenuated, indicating 5-HT1A autoreceptor down-regulation. Finally, direct application of the diazinon metabolite diazinon oxon to naive rat brain slices increased the firing rate of DRN 5-HT neurones, as did chlorpyrifos-oxon, indicating the effect was not unique to diazinon. The oxon-induced augmentation of firing was blocked by the nicotinic acetylcholine receptor antagonist mecamylamine and the AMPA/kainate glutamate receptor antagonist DNQX. Together these data indicate that 1) acute OP exposure inhibits DRN cholinesterase, leading to acetylcholine accumulation, 2) the acetylcholine activates nicotinic receptors on 5-HT neurones and also on glutamatergic neurones, thus releasing glutamate and activating 5-HT neuronal AMPA/kainate receptors 3) the increase in 5-HT neuronal activity, and resulting 5-HT release, may lead to 5-HT1A autoreceptor down-regulation. This mechanism may be involved in the reported increase in risk of developing anxiety and depression following occupational OP exposure.


Subject(s)
Brain/drug effects , Chlorpyrifos/adverse effects , Cholinesterase Inhibitors/adverse effects , Diazinon/adverse effects , Neurons/drug effects , Pesticides/adverse effects , Serotonin/metabolism , Acetylcholinesterase/metabolism , Animals , Anxiety/etiology , Brain/metabolism , Depression/etiology , Male , Neurons/metabolism , Rats
9.
Mol Neurodegener ; 10: 47, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26394842

ABSTRACT

BACKGROUND: Patients with advanced Parkinson's disease (PD) often present with axial symptoms, including postural- and gait difficulties that respond poorly to dopaminergic agents. Although deep brain stimulation (DBS) of a highly heterogeneous brain structure, the pedunculopontine nucleus (PPN), improves such symptoms, the underlying neuronal substrate responsible for the clinical benefits remains largely unknown, thus hampering optimization of DBS interventions. Choline acetyltransferase (ChAT)::Cre(+) transgenic rats were sham-lesioned or rendered parkinsonian through intranigral, unihemispheric stereotaxic administration of the ubiquitin-proteasomal system inhibitor, lactacystin, combined with designer receptors exclusively activated by designer drugs (DREADD), to activate the cholinergic neurons of the nucleus tegmenti pedunculopontine (PPTg), the rat equivalent of the human PPN. We have previously shown that the lactacystin rat model accurately reflects aspects of PD, including a partial loss of PPTg cholinergic neurons, similar to what is seen in the post-mortem brains of advanced PD patients. RESULTS: In this manuscript, we show that transient activation of the remaining PPTg cholinergic neurons in the lactacystin rat model of PD, via peripheral administration of the cognate DREADD ligand, clozapine-N-oxide (CNO), dramatically improved motor symptoms, as was assessed by behavioral tests that measured postural instability, gait, sensorimotor integration, forelimb akinesia and general motor activity. In vivo electrophysiological recordings revealed increased spiking activity of PPTg putative cholinergic neurons during CNO-induced activation. c-Fos expression in DREADD overexpressed ChAT-immunopositive (ChAT+) neurons of the PPTg was also increased by CNO administration, consistent with upregulated neuronal activation in this defined neuronal population. CONCLUSIONS: Overall, these findings provide evidence that functional modulation of PPN cholinergic neurons alleviates parkinsonian motor symptoms.


Subject(s)
Cholinergic Agents/pharmacology , Cholinergic Neurons/drug effects , Parkinson Disease/metabolism , Pedunculopontine Tegmental Nucleus/metabolism , Pharmacogenetics , Animals , Cholinergic Agents/administration & dosage , Deep Brain Stimulation/methods , Disease Models, Animal , Pharmacogenetics/methods , Rats, Long-Evans , Rats, Transgenic
10.
Neurotoxicology ; 50: 149-56, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26297601

ABSTRACT

Occupational exposure to organophosphate (OPs) pesticides is reported to increase in the risk of developing anxiety and depression. Preclinical studies using OP levels, which inhibit acetylcholinesterase activity, support the clinical observations, but little is known of the effects of exposure below this threshold. We examined the effects of low level OP exposure on behaviours and neurochemistry associated with affective disorders. Adult rats were administered either diazinon (1 mg/kg i.p.) which is present in sheep dip and flea collars, chlorpyrifos (1 mg/kg i.p.) which is present in crop sprays, or vehicle for 5 days. OP exposure did not affect acetylcholinesterase activity (blood, cerebellum, caudate putamen, hippocampus, prefrontal cortex), anhedonia-like behaviour (sucrose preference), working memory (novel object recognition), locomotor activity or anxiety-like behaviour in the open field arena. In contrast OP exposure attenuated marble burying behaviour, an ethological measure of anxiety. The diazinon-induced reduction in marble burying persisted after exposure cessation. In comparison to vehicle, dopamine levels were lowered by chlorpyrifos, but not diazinon. 5-HT levels and turnover were unaffected by OP exposure. However, 5-HT transporter expression was reduced by diazinon suggesting subtle changes in 5-HT transmission. These data indicate exposure to occupational and domestic OPs, below the threshold to inhibit acetylcholinesterase, can subtly alter behaviour and neurochemistry.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Anxiety/physiopathology , Chlorpyrifos/therapeutic use , Diazinon/therapeutic use , Exploratory Behavior/drug effects , Acetylcholinesterase/metabolism , Analysis of Variance , Animals , Brain/drug effects , Brain/metabolism , Chlorpyrifos/pharmacology , Chromatography, High Pressure Liquid , Diazinon/pharmacology , Disease Models, Animal , Electrochemical Techniques , Food Preferences/drug effects , Male , Memory, Short-Term/drug effects , Motor Activity/drug effects , Neurotransmitter Agents/metabolism , Rats
11.
Neuropsychopharmacology ; 40(6): 1471-84, 2015 May.
Article in English | MEDLINE | ID: mdl-25547714

ABSTRACT

Both the glutamatergic and serotonergic (5-HT) systems are implicated in the modulation of mood and anxiety. Descending cortical glutamatergic neurons regulate 5-HT neuronal activity in the midbrain raphe nuclei through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. To analyze the functional role of GLUA1-containing AMPA receptors in serotonergic neurons, we used the Cre-ERT2/loxP-system for the conditional inactivation of the GLUA1-encoding Gria1 gene selectively in 5-HT neurons of adult mice. These Gria1(5-HT-/-) mice exhibited a distinct anxiety phenotype but showed no alterations in locomotion, depression-like behavior, or learning and memory. Increased anxiety-related behavior was associated with significant decreases in tryptophan hydroxylase 2 (TPH2) expression and activity, and subsequent reductions in tissue levels of 5-HT, its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine in the raphe nuclei. However, TPH2 expression and activity as well as monoamine levels were unchanged in the projection areas of 5-HT neurons. Extracellular electrophysiological recordings of 5-HT neurons revealed that, while α1-adrenoceptor-mediated excitation was unchanged, excitatory responses to AMPA were enhanced and the 5-HT1A autoreceptor-mediated inhibitory response to 5-HT was attenuated in Gria1(5-HT-/-) mice. Our data show that a loss of GLUA1 protein in 5-HT neurons enhances AMPA receptor function and leads to multiple local molecular and neurochemical changes in the raphe nuclei that dysregulate 5-HT neuronal activity and induce anxiety-like behavior.


Subject(s)
Anxiety/physiopathology , Brain/physiopathology , Receptors, AMPA/deficiency , Serotonergic Neurons/physiology , Animals , Depression/physiopathology , Hydroxyindoleacetic Acid/metabolism , Learning/physiology , Male , Memory/physiology , Mice, Inbred C57BL , Mice, Knockout , Norepinephrine/metabolism , Phenotype , Receptors, AMPA/genetics , Receptors, Adrenergic, alpha-1/metabolism , Serotonin/metabolism , Tryptophan Hydroxylase/metabolism
12.
Eur Neuropsychopharmacol ; 24(2): 321-32, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23932190

ABSTRACT

Medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC) play critical roles in cognition and behavioural control. Glutamatergic, GABAergic, and monoaminergic dysfunction in the prefrontal cortex has been hypothesised to underlie symptoms in neuropsychiatric disorders. Here we characterised electrically-evoked field potentials in the mPFC and OFC. Electrical stimulation evoked field potentials in layer V/VI of the mPFC and layer V of the OFC. The earliest component (approximately 2 ms latency) was insensitive to glutamate receptor blockade and was presumed to be presynaptic. Later components were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX (20 µM)) and were assumed to reflect monosynaptic (latency 4-6 ms) and polysynaptic activity (latency 6-40 ms) mediated by glutamate via AMPA/kainate receptor. In the mPFC, but not the OFC, the monosynaptic component was also partly blocked by 2-amino-5-phosphonopentanoic acid (AP-5 (50-100µM)) indicating the involvement of NMDA receptors. Bicuculline (3-10 µM) enhanced the monosynaptic component suggesting electrically-evoked and/or glutamate induced GABA release inhibits the monosynaptic component via GABAA receptor activation. There were complex effects of bicuculline on polysynaptic components. In the mPFC both the mono- and polysynaptic components were attenuated by 5-HT (10-100 µM) and NA (30 and 60 µM) and the monosynaptic component was attenuated by DA (100 µM). In the OFC the mono- and polysynaptic components were also attenuated by 5-HT (100 µM), NA (10-100 µM) but DA (10-100 µM) had no effect. We propose that these pharmacologically characterised electrically-evoked field potentials in the mPFC and OFC are useful models for the study of prefrontal cortical physiology and pathophysiology.


Subject(s)
Electric Stimulation , Evoked Potentials/physiology , Frontal Lobe/physiology , Prefrontal Cortex/physiology , Synaptic Transmission/physiology , Animals , Dopamine/metabolism , Evoked Potentials/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Frontal Lobe/drug effects , GABA-A Receptor Antagonists/metabolism , Male , Norepinephrine/metabolism , Prefrontal Cortex/drug effects , Rats , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/metabolism , Receptors, GABA-A/metabolism , Receptors, Glutamate/metabolism , Receptors, Kainic Acid/antagonists & inhibitors , Receptors, Kainic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Serotonin/metabolism , Synaptic Transmission/drug effects
13.
J Insect Physiol ; 61: 8-15, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24374107

ABSTRACT

Serotonin (5-hydroxytryptamine, 5-HT) is involved in the regulation of feeding and digestion in many animals from worms to mammals. In insects, 5-HT functions both as a neurotransmitter and as a systemic hormone. Here we tested its role as a neurotransmitter in feeding and crop contractions and its role as a systemic hormone that affected feeding in adult foraging honeybees. We found 5-HT immunoreactive processes throughout the gut, including on the surface of the oesophagus, crop, proventriculus, and the midgut, as well as in the ventral nerve cord. mRNA transcripts for all four of the known bee 5-HT receptors (Am5-ht1A,2α,2ß,7) were expressed in the crop and the midgut suggesting a functional role for 5-HT in these locations. Application of a cocktail of antagonists with activity against these known receptors to the entire gut in vivo reduced the rate of spontaneous contraction in the crop and proventriculus. Although feeding with sucrose caused a small elevation of endogenous 5-HT levels in the haemolymph, injection of exogenous 5-HT directly into the abdomen of the bee to elevate 5-HT in the haemolymph did not alter food intake. However, when 5-HT was injected into directly into the brain there was a reduction in intake of carbohydrate, amino acid, or toxin-laced food solutions. Our data demonstrate that 5-HT inhibits feeding in the brain and excites muscle contractions in the gut, but general elevation of 5-HT in the bee's haemolymph does not affect food intake.


Subject(s)
Bees/physiology , Feeding Behavior/physiology , Serotonin/metabolism , Animal Nutritional Physiological Phenomena , Animals , Chromatography, High Pressure Liquid , Gastrointestinal Tract/physiology , Immunohistochemistry , Microscopy, Confocal , Microscopy, Fluorescence , Muscle Contraction/physiology , Nervous System Physiological Phenomena , Real-Time Polymerase Chain Reaction , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , Serotonin/blood , Serotonin/genetics , Sucrose/metabolism
14.
J Appl Physiol (1985) ; 115(10): 1562-71, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23970537

ABSTRACT

A unique property of mitochondria in mammalian cells is their ability to physically interact and undergo dynamic events of fusion/fission that remodel their morphology and possibly their function. In cultured cells, metabolic perturbations similar to those incurred during exercise influence mitochondrial fusion and fission processes, but it is unknown whether exercise acutely alters mitochondrial morphology and/or membrane interactions in vivo. To study this question, we subjected mice to a 3-h voluntarily exercise intervention following their normal physical activity patterns, and quantified mitochondrial morphology and membrane interactions in the soleus using a quantitative electron microscopy approach. A single exercise bout effectively decreased blood glucose (P < 0.05) and intramyocellular lipid content (P < 0.01), indicating increased muscle metabolic demand. The number of mitochondria spanning Z-lines and proportion of electron-dense contact sites (EDCS) between adjacent mitochondrial membranes were increased immediately after exercise among both subsarcolemmal (+116%, P < 0.05) and intermyofibrillar mitochondria (+191%, P < 0.001), indicating increased physical interactions. Mitochondrial morphology, and abundance of the mitochondrial pro-fusion proteins Mfn2 and OPA1 were unchanged. Collectively, these results support the notion that mitochondrial membrane dynamics are actively remodelled in skeletal muscle, which may be regulated by contractile activity and the metabolic state. Future studies are required to understand the implications of mitochondrial dynamics in skeletal muscle physiology during exercise and inactivity.


Subject(s)
Membrane Fusion , Mitochondria, Muscle/ultrastructure , Mitochondrial Dynamics , Mitochondrial Membranes/ultrastructure , Muscle Contraction , Muscle, Skeletal/ultrastructure , Animals , Blood Glucose/metabolism , Energy Metabolism , Female , GTP Phosphohydrolases/metabolism , Lipid Metabolism , Mice , Mice, Inbred C57BL , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Mitochondria, Muscle/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Size , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Time Factors
15.
Neuropsychopharmacology ; 37(9): 1986-98, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22491354

ABSTRACT

The association of single-nucleotide polymorphisms (SNPs) in the human tryptophan hydroxylase 2 (TPH2) gene with anxiety traits and depression has been inconclusive. Observed inconsistencies might result from the fact that TPH2 polymorphisms have been studied in a genetically heterogeneous human population. A defined genetic background, control over environmental factors, and the ability to analyze the molecular and neurochemical consequences of introduced genetic alterations constitute major advantages of investigating SNPs in inbred laboratory mouse strains. To investigate the behavioral and neurochemical consequences of a functional C1473G SNP in the mouse Tph2 gene, we generated congenic C57BL/6N mice homozygous for the Tph2 1473G allele. The Arg(447) substitution in the TPH2 enzyme resulted in a significant reduction of the brain serotonin (5-HT) in vivo synthesis rate. Despite decreased 5-HT synthesis, we could detect neither a reduction of brain region-specific 5-HT concentrations nor changes in baseline and stress-induced 5-HT release using a microdialysis approach. However, using a [(35)S]GTP-γ-S binding assay and 5-HT(1A) receptor autoradiography, a functional desensitization of 5-HT(1A) autoreceptors could be identified. Furthermore, behavioral analysis revealed a distinct anxiety phenotype in homozygous Tph2 1473G mice, which could be reversed with chronic escitalopram treatment. Alterations in depressive-like behavior could not be detected under baseline conditions or after chronic mild stress. These findings provide evidence for an involvement of functional Tph2 polymorphisms in anxiety-related behaviors, which are likely not caused directly by alterations in 5-HT content or release but are rather due to compensatory changes during development involving functional desensitization of 5-HT(1A) autoreceptors.


Subject(s)
Anxiety/genetics , Anxiety/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , Receptor, Serotonin, 5-HT1A/genetics , Serotonin/genetics , Tryptophan Hydroxylase/genetics , Animals , Anxiety/enzymology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Receptor, Serotonin, 5-HT1A/physiology , Serotonin/biosynthesis , Tryptophan Hydroxylase/physiology
16.
Neuropharmacology ; 62(4): 1787-96, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22197516

ABSTRACT

The ascending 5-HT system has been and continues to be the subject of much research. The majority of in vivo electrophysiological and neurochemical studies of 5-HT function in rodents have been conducted in animals under anaesthesia - usually chloral hydrate or urethane. However, the effects of anaesthetics, on 5-HT function have not been systematically investigated. Here we used in vitro electrophysiology in dorsal raphe slices, to determine the effects of anaesthetically relevant concentrations of chloral hydrate (100 µM and 1 mM), urethane (10 and 30 mM), pentobarbitone (10 and 100 µM) and ketamine (10, 100 and 300 µM) on regulators of 5-HT firing activity. We examined i) basal firing (driven by α(1) adrenoceptors), ii) the excitatory response to N-methyl-d-aspartate (NMDA), iii) the 5-HT(1A) autoreceptor-mediated inhibitory response to 5-HT and iv) the GABA(A) receptor-mediated inhibitory response to 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridinyl-3-ol (THIP, gaboxadol). Pentobarbitone selectively enhanced the response to THIP. Ketamine decreased basal firing, attenuated the response to NMDA, and enhanced responses to both 5-HT and THIP. Chloral hydrate had marginal effects on basal firing, slightly attenuated the NMDA response, and enhanced both the 5-HT and THIP responses. Urethane increased basal firing, decreased the NMDA response, increased the response to THIP, but had no effect on the 5-HT response. Our data indicate that all anaesthetics tested significantly affect the regulators of 5-HT neuronal function. These findings will aid in the interpretation of previous reports of in vivo studies of the 5-HT system and will allow researchers to make a rational selection of anaesthetic for future studies.


Subject(s)
Anesthetics, General/pharmacology , Chloral Hydrate/pharmacology , Ketamine/pharmacology , Pentobarbital/pharmacology , Raphe Nuclei/drug effects , Serotonergic Neurons/drug effects , Urethane/pharmacology , Action Potentials/drug effects , Animals , Hypnotics and Sedatives/pharmacology , Isoxazoles/pharmacology , Male , N-Methylaspartate/pharmacology , Rats , Serotonin/pharmacology
17.
Curr Biol ; 21(12): 1070-3, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21636277

ABSTRACT

Whether animals experience human-like emotions is controversial and of immense societal concern [1-3]. Because animals cannot provide subjective reports of how they feel, emotional state can only be inferred using physiological, cognitive, and behavioral measures [4-8]. In humans, negative feelings are reliably correlated with pessimistic cognitive biases, defined as the increased expectation of bad outcomes [9-11]. Recently, mammals [12-16] and birds [17-20] with poor welfare have also been found to display pessimistic-like decision making, but cognitive biases have not thus far been explored in invertebrates. Here, we ask whether honeybees display a pessimistic cognitive bias when they are subjected to an anxiety-like state induced by vigorous shaking designed to simulate a predatory attack. We show for the first time that agitated bees are more likely to classify ambiguous stimuli as predicting punishment. Shaken bees also have lower levels of hemolymph dopamine, octopamine, and serotonin. In demonstrating state-dependent modulation of categorization in bees, and thereby a cognitive component of emotion, we show that the bees' response to a negatively valenced event has more in common with that of vertebrates than previously thought. This finding reinforces the use of cognitive bias as a measure of negative emotional states across species and suggests that honeybees could be regarded as exhibiting emotions.


Subject(s)
Bees/physiology , Behavior, Animal , Cognition , Animals
19.
Neuropsychopharmacology ; 34(10): 2265-74, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19494803

ABSTRACT

Patients with bipolar disorder have abnormalities in glucocorticoid secretion, dopaminergic neurotransmission, and prefrontal cortical function. We hypothesized that the flattening of the diurnal glucocorticoid rhythm, commonly seen in bipolar disorder, modulates dopaminergic neurotransmission in the prefrontal cortex (PFC) leading to abnormalities in prefrontally mediated neurocognitive functions. To address this hypothesis, we investigated the effects of a flattened glucocorticoid rhythm on (i) the release of dopamine in the PFC and (ii) the transcription of genes in the ventral tegmental area (VTA) coding for proteins involved in presynaptic aspects of dopaminergic neurotransmission. Male rats were treated for 13-15 days with corticosterone (50 microg/ml in the drinking water) or vehicle (0.5% ethanol). Corticosterone treatment resulted in marked adrenal atrophy and flattening of the glucocorticoid rhythm as measured by repeated blood sampling. Animals treated with corticosterone showed markedly enhanced basal dopamine release in the PFC as measured by microdialysis in the presence of a dopamine reuptake inhibitor. Depolarization-evoked release was also enhanced, suggesting that the corticosterone effect on basal release did not result from an increase in the neuronal firing rate. Local blockade of terminal D(2) autoreceptors failed to normalize release to control values, suggesting that the enhanced release was not because of reduced autoreceptor sensitivity. In situ hybridization histochemistry showed that mRNAs coding tyrosine hydroxylase and the vesicular monoamine transporter 2 were elevated in the VTA of corticosterone-treated rats. Our data show that flattening of the glucocorticoid rhythm increases dopamine release in the PFC possibly as a result of increased synthesis and vesicular storage. This provides a mechanistic explanation for prefrontal dysfunction in bipolar and other affective disorders associated with glucocorticoid dysrhythmia.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Circadian Rhythm/drug effects , Corticosterone/pharmacology , Dopamine/metabolism , Prefrontal Cortex/drug effects , Synaptic Transmission/drug effects , Adrenal Glands/drug effects , Animals , Body Weight/drug effects , Bupropion/pharmacology , Dopamine Antagonists/pharmacology , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Uptake Inhibitors/pharmacology , Drug Interactions , Gene Expression Regulation/drug effects , Male , Microdialysis/methods , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Potassium/pharmacology , Prefrontal Cortex/metabolism , RNA, Messenger/metabolism , Rats , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Sulpiride/metabolism , Sulpiride/pharmacology , Time Factors , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Vesicular Monoamine Transport Proteins/genetics , Vesicular Monoamine Transport Proteins/metabolism
20.
Pharmacol Biochem Behav ; 90(2): 218-25, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18031799

ABSTRACT

Dysregulation of mesolimbic dopamine (DA) neurotransmission has been implicated in bipolar disorder. DA release in the nucleus accumbens is reduced in rats treated chronically with the mood stabiliser lithium, and this effect is maintained for 3 days after withdrawal from the lithium treatment. We tested whether this decrease in DA release is due to an increase in D(2/3) autoreceptor sensitivity. In vivo microdialysis studies showed that in the shell of the nucleus accumbens, dialysate DA was decreased following chronic lithium treatment and 3 days after withdrawal from lithium treatment. The elevation of dialysate DA induced by local blockade of the terminal D(2/3) receptor was reduced in both lithium treated and lithium withdrawn groups. In vitro electrophysiology studies showed that chronic lithium treatment (and lithium withdrawal) did not alter either basal firing rate of DA neurones in the ventral tegmental area, or somatodendritic D(2/3) autoreceptor-mediated inhibition of firing. D(2) mRNA expression in the ventral tegmental area was unchanged by lithium treatment and lithium withdrawal. Our data suggest that the decrease in dopamine release in the nucleus accumbens induced by chronic lithium treatment is not the result of increased terminal or somatodendritic autoreceptor sensitivity or decreased firing rate of DA neurones.


Subject(s)
Autoreceptors/drug effects , Dopamine/physiology , Lithium Chloride/pharmacology , Receptors, Dopamine D2/drug effects , Receptors, Dopamine D3/drug effects , Animals , Autoreceptors/physiology , Male , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , RNA, Messenger/analysis , Rats , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/physiology , Receptors, Dopamine D3/physiology , Sulpiride/pharmacology , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...