Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(9): e30355, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765072

ABSTRACT

It might be very important for the polymer processing industries to comprehend how Maxwell fluids behave on a stretched cylinder. Optimizing the extrusion and drawing processes can ensure the desired product qualities while avoiding faults. The objective of this study is heat transfer analysis on a Maxwell dusty fluid flow cylindrical surface with the Cattaneo-Christov concept. We immerse the cylinder in porous media, with a two-dimensional fluid regulating the flow. Our mathematical model further considers the effects of variable thermal conductivity, radiation, viscous and joule heating, magnetic field, thermal stratification, and slip velocity. Based on the presumptions, partial differential equations (PDE's) have been used to evolve the mathematical model. Using similarity transformations, the PDE's for heat and momentum for both phases are transformed into highly nonlinear ODE's.The numerical results have been obtained on these ordinary differential equations by using the RKF-45 method. This issue's main characteristic is that it examines the scenario's liquid and dust phases throughout. Results are given both visually and tabularly for the major parameters over a velocity, temperature, skin friction coefficient, and Nusselt number. When we compared our method to a previously published paper, we discovered a decent match. The findings, which were obtained for our system, show that the velocity and thermal gradient of both the phases of fluid and dust behave in an opposite trend in favor of rising Maxwell parameter, where the curvature parameter makes the rise in the same manner. Furthermore, the thermal transport profiles for both phases decline for the rising thermal time relaxation parameter.

2.
Heliyon ; 5(2): e01281, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30891517

ABSTRACT

An analytical investigation of two-dimensional heat transfer behavior of an axisymmetric incompressible dissipative viscous fluid flow in a circular pipe is considered. The flow is subjected to an externally applied uniform suction over the pipe wall in the transverse direction and a constant magnetic field opposite to the wall. The reduced Navier-Stokes equations in the cylindrical system are applied for the velocity and temperature fields. Constant wall temperature is considered as the thermal boundary condition. The velocity components are expressed into stream function and its solution is acquired by the Homotopy analysis method (HAM). The effects of magnetic body force parameter(M), suction Reynolds number (Re), Prandtl number (Pr)and Eckert number (Ec) on velocity and temperature are examined and are presented in a graphical frame. Streamlines, isotherms and pressure contours are likewise pictured. It is observed that with increasing suction Reynold number decelerates axial flow, whereas it enhances the radial flow. The temperature distribution increases with an increase in Prandtl number, whereas it decreases with an increase in Eckert number (viscous dissipation effect).

SELECTION OF CITATIONS
SEARCH DETAIL
...