Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Pathogens ; 13(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38921759

ABSTRACT

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, commonly associated with nosocomial transmission. Gram-negative bacterial species are particularly problematic due to the release of the lipopolysaccharide toxins upon cell death. The lipopolysaccharide toxin of E. coli has a greater immunogenic potential than that of other Gram-negative bacteria. The resultant dysregulation of the immune system is associated with organ failure and mortality, with pregnant women, ICU patients, and neonates being particularly vulnerable. Additionally, sepsis recovery patients have an increased risk of re-hospitalisation, chronic illness, co-morbidities, organ damage/failure, and a reduced life expectancy. The emergence and increasing prevalence of antimicrobial resistance in bacterial and fungal species has impacted the treatment of sepsis patients, leading to increasing mortality rates. Multidrug resistant pathogens including vancomycin-resistant Enterococcus, beta lactam-resistant Klebsiella, and carbapenem-resistant Acinetobacter species are associated with an increased risk of mortality. To improve the prognosis of sepsis patients, predominantly high-risk neonates, advances must be made in the early diagnosis, triage, and control of sepsis. The identification of suitable biomarkers and biomarker combinations, coupled with machine learning and artificial intelligence, show promise in early detection protocols. Rapid diagnosis of sepsis in patients is essential to inform on clinical treatment, especially with resistant infectious agents. This timely review aims to discuss sepsis prevalence, aetiology, and recent advances towards disease mitigation and control.

2.
Biomedicines ; 12(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38672096

ABSTRACT

The human gastrointestinal tract houses a diverse range of microbial species that play an integral part in many biological functions. Several preclinical studies using germ-free mice models have demonstrated that the gut microbiome profoundly influences carcinogenesis and progression. Colorectal cancer appears to be associated with microbial dysbiosis involving certain bacterial species, including F. nucleatum, pks+ E. coli, and B. fragilis, with virome commensals also disrupted in patients. A dysbiosis toward these pro-carcinogenic species increases significantly in CRC patients, with reduced numbers of the preventative species Clostridium butyicum, Roseburia, and Bifidobacterium evident. There is also a correlation between Clostridium infection and CRC. F. nucleatum, in particular, is strongly associated with CRC where it is associated with therapeutic resistance and poor outcomes in patients. The carcinogenic mode of action of pathogenic bacteria in CRC is a result of genotoxicity, epigenetic alterations, ROS generation, and pro-inflammatory activity. The aim of this review is to discuss the microbial species and their impact on colorectal cancer in terms of disease initiation, progression, and metastasis. The potential of anticancer peptides as anticancer agents or adjuvants is also discussed, as novel treatment options are required to combat the high levels of resistance to current pharmaceutical options.

3.
Microorganisms ; 11(10)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37894141

ABSTRACT

Clostridioides species possess many virulence factors and alarming levels of muti-drug resistance which make them a significant risk to public health safety and a causative agent of livestock disease. Clostridioides result in serious systemic and gastrointestinal diseases such as myonecrosis, colitis, food poisoning and gastroenteritis. As foodborne pathogens, Clostridioides species are associated with significant incidences of morbidity and mortality where the application of broad-spectrum antibiotics predisposes patients to virulent Clostridioides colonisation. As part of the One Health approach, there is an urgent need to eliminate the use of antibiotics in food production to safeguard animals, humans and the environment. Alternative options are warranted to control foodborne pathogens at all stages of food production. Antimicrobial peptides and bacteriophages have demonstrated efficacy against Clostridioides species and may offer antimicrobial biocontrol options. The bacteriocin nisin, for example, has been implemented as a biopreservative for the control of Listeria, Staphylococcus and Clostridia species in food. Bacteriophage preparations have also gained recognition for the antibacterial action against highly virulent bacterial species including foodborne pathogens. Studies are warranted to mitigate the formulation and administration limitations associated with the application of such antimicrobials as biocontrol strategies. This review outlines foodborne Clostridioides species, their virulence factors, and potential biocontrol options for application in food production.

4.
Infect Dis Rep ; 15(4): 454-469, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37623050

ABSTRACT

The antimicrobial resistance crisis is an ongoing major threat to public health safety. Low- and middle-income countries are particularly susceptible to higher fatality rates and the economic impact of antimicrobial resistance (AMR). As an increasing number of pathogens emerge with multi- and pan-drug resistance to last-resort antibiotics, there is an urgent need to provide alternative antibacterial options to mitigate disease transmission, morbidity, and mortality. As identified by the World Health Organization (WHO), critically important pathogens such as Klebsiella and Pseudomonas species are becoming resistant to last-resort antibiotics including colistin while being frequently isolated from clinical cases of infection. Antimicrobial peptides are potent amino acid sequences produced by many life forms from prokaryotic, fungal, plant, to animal species. These peptides have many advantages, including their multi-hit mode of action, potency, and rapid onset of action with low levels of resistance being evident. These innate defense mechanisms also have an immune-stimulating action among other activities in vivo, thus making them ideal therapeutic options. Large-scale production and formulation issues (pharmacokinetics, pharmacodynamics), high cost, and protease instability hinder their mass production and limit their clinical application. This review outlines the potential of these peptides to act as therapeutic agents in the treatment of multidrug-resistant infections considering the mode of action, resistance, and formulation aspects. Clinically relevant Gram-positive and Gram-negative pathogens are highlighted according to the WHO priority pathogen list.

5.
Vaccines (Basel) ; 11(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37243096

ABSTRACT

Emerging, re-emerging and zoonotic viral pathogens represent a serious threat to human health, resulting in morbidity, mortality and potentially economic instability at a global scale. Certainly, the recent emergence of the novel SARS-CoV-2 virus (and its variants) highlighted the impact of such pathogens, with the pandemic creating unprecedented and continued demands for the accelerated production of antiviral therapeutics. With limited effective small molecule therapies available for metaphylaxis, vaccination programs have been the mainstay against virulent viral species. Traditional vaccines remain highly effective at providing high antibody titres, but are, however, slow to manufacture in times of emergency. The limitations of traditional vaccine modalities may be overcome by novel strategies, as outlined herein. To prevent future disease outbreaks, paradigm shift changes in manufacturing and distribution are necessary to advance the production of vaccines, monoclonal antibodies, cytokines and other antiviral therapies. Accelerated paths for antivirals have been made possible due to advances in bioprocessing, leading to the production of novel antiviral agents. This review outlines the role of bioprocessing in the production of biologics and advances in mitigating viral infectious disease. In an era of emerging viral diseases and the proliferation of antimicrobial resistance, this review provides insight into a significant method of antiviral agent production which is key to protecting public health.

6.
Biomedicines ; 11(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36979726

ABSTRACT

The prevalence of neurological conditions which manifest with chronic pain is increasing globally, where the World Health Organisation has now classified chronic pain as a risk factor for death by suicide. While many chronic pain conditions have a definitive underlying aetiology, non-somatic conditions represent difficult-to-diagnose and difficult-to-treat public health issues. The interaction of the immune system and nervous system has become an important area in understanding the occurrence of neuroinflammation, nociception, peripheral and central sensitisation seen in chronic pain. More recently, however, the role of the resident microbial species in the human gastrointestinal tract has become evident. Dysbiosis, an alteration in the microbial species present in favour of non-beneficial and pathogenic species has emerged as important in many chronic pain conditions, including functional somatic syndromes, autoimmune disease and neurological diseases. In particular, a decreased abundance of small chain fatty acid, e.g., butyrate-producing bacteria, including Faecalibacterium, Firmicutes and some Bacteroides spp., is frequently evident in morbidities associated with long-term pain. Microbes involved in the production of neurotransmitters serotonin, GABA, glutamate and dopamine, which mediate the gut-brain, axis are also important. This review outlines the dysbiosis present in many disease states manifesting with chronic pain, where an overlap in morbidities is also frequently present in patients.

7.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675092

ABSTRACT

Fungal pathogens cause significant human morbidity and mortality globally, where there is a propensity to infect vulnerable people such as the immunocompromised ones. There is increasing evidence of resistance to antifungal drugs, which has significant implications for cutaneous, invasive and bloodstream infections. The World Health Organization (WHO) published a priority list of fungal pathogens in October 2022, thus, highlighting that a crisis point has been reached where there is a pressing need to address the solutions. This review provides a timely insight into the challenges and implications on the topic of antifungal drug resistance along with discussing the effectiveness of established disease mitigation modalities and approaches. There is also a need to elucidate the cellular and molecular mechanisms of fungal resistance to inform effective solutions. The established fungal decontamination approaches are effective for medical device processing and sterilization, but the presence of pathogenic fungi in recalcitrant biofilms can lead to challenges, particularly during cleaning. Future design ideas for implantable and reusable medical devices should consider antifungal materials and appropriates for disinfection, and where it is relevant, sterilization. Preventing the growth of mycotoxin-producing fungi on foods through the use of appropriate end-to-end processes is advisable, as mycotoxins are recalcitrant and challenging to eliminate once they have formed.


Subject(s)
Antifungal Agents , Mycotoxins , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Fungi , Biofilms , Mycotoxins/pharmacology , Drug Resistance, Fungal
8.
Int J Mol Sci ; 25(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38203372

ABSTRACT

Healthcare-associated infections caused by multi-drug-resistant pathogens are increasing globally, and current antimicrobial options have limited efficacy against these robust species. The WHO details the critically important bacterial and fungal species that are often associated with medical device HAIs. The effective sterilization of medical devices plays a key role in preventing infectious disease morbidity and mortality. A lack of adherence to protocol and limitations associated with each sterilization modality, however, allows for the incidence of disease. Furthermore, issues relating to carcinogenic emissions from ethylene oxide gas (EtO) have motivated the EPA to propose limiting EtO use or seeking alternative sterilization methods for medical devices. The Food and Drug Administration supports the sterilization of healthcare products using low-temperature VH2O2 as an alternative to EtO. With advances in biomaterial and medical devices and the increasing use of combination products, current sterilization modalities are becoming limited. Novel approaches to disinfection and sterilization of medical devices, biomaterials, and therapeutics are warranted to safeguard public health. Bacteriophages, endolysins, and antimicrobial peptides are considered promising options for the prophylactic and meta-phylactic control of infectious diseases. This timely review discusses the application of these biologics as antimicrobial agents against critically important WHO pathogens, including ESKAPE bacterial species.


Subject(s)
Bacteriophages , Cross Infection , United States , Humans , Patient Safety , Disinfection , Antimicrobial Peptides , Biocompatible Materials , Delivery of Health Care
9.
J Fungi (Basel) ; 8(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36354946

ABSTRACT

Biologics have become an important area of medical research generating therapeutics essential for the treatment of many disease states. Biologics are defined as biologically active compounds manufactured by living cells or through biological processes termed bioprocessing. Compared to small molecules which are chemically synthesised they are relatively complex and therapeutically specific molecules. Biologics include hormones, vaccines, blood products, monoclonal antibodies, recombinant therapeutic proteins, enzymes, gene and cellular therapies amongst others. For biologic production prokaryotic and eukaryotic cells (mammalian and non-mammalian) are used as expression systems. Eukaryotic expression systems offer many advantages over prokaryotic based systems. The manufacture of high-quality proteins for human clinical use via recombinant technologies has been achieved in yeast and filamentous fungal systems. Advances in bioprocessing such as genetic engineering, bioreactor design, continuous processing, and quality by design has allowed for increased productivity and higher yield in in these non-mammalian eukaryotic systems with protein translation similar to mammalian systems. The application of eukaryotic expressions systems for the manufacture of biologics of therapeutic importance are described herein.

10.
Antibiotics (Basel) ; 11(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36289982

ABSTRACT

Food safety and sustainable food production is an important part of the Sustainable Development goals aiming to safeguard the health and wellbeing of humans, animals and the environment. Foodborne illness is a major cause of morbidity and mortality, particularly as the global crisis of antimicrobial resistance proliferates. In order to actively move towards sustainable food production, it is imperative that green biocontrol options are implemented to prevent and mitigate infectious disease in food production. Replacing current chemical pesticides, antimicrobials and disinfectants with green, organic options such as biopesticides is a step towards a sustainable future. Bacteriophages, virus which infect and kill bacteria are an area of great potential as biocontrol agents in agriculture and aquaculture. Lytic bacteriophages offer many advantages over traditional chemical-based solutions to control microbiological contamination in the food industry. The innate specificity for target bacterial species, their natural presence in the environment and biocompatibility with animal and humans means phages are a practical biocontrol candidate at all stages of food production, from farm-to-fork. Phages have demonstrated efficacy as bio-sanitisation and bio-preservation agents against many foodborne pathogens, with activity against biofilm communities also evident. Additionally, phages have long been recognised for their potential as therapeutics, prophylactically and metaphylactically. Further investigation is warranted however, to overcome their limitations such as formulation and stability issues, phage resistance mechanisms and transmission of bacterial virulence factors.

11.
Sci Total Environ ; 851(Pt 2): 158284, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36029815

ABSTRACT

Fungal pathogens contribute to significant disease burden globally; however, the fact that fungi are eukaryotes has greatly complicated their role in fungal-mediated infections and alleviation. Antifungal drugs are often toxic to host cells and there is increasing evidence of adaptive resistance in animals and humans. Existing fungal diagnostic and treatment regimens have limitations that has contributed to the alarming high mortality rates and prolonged morbidity seen in immunocompromised cohorts caused by opportunistic invasive infections as evidenced during HIV and COVID-19 pandemics. There is a need to develop real-time monitoring and diagnostic methods for fungal pathogens and to create a greater awareness as to the contribution of fungal pathogens in disease causation. Greater information is required on the appropriate selection and dose of antifungal drugs including factors governing resistance where there is commensurate need to discover more appropriate and effective solutions. Popular azole fungal drugs are widely detected in surface water and sediment due to incomplete removal in wastewater treatment plants where they are resistant to microbial degradation and may cause toxic effects on aquatic organisms such as algae and fish. UV has limited effectiveness in destruction of anti-fungal drugs where there is increased interest in the combination approaches such as novel use of pulsed-plasma gas-discharge technologies for environmental waste management. There is growing interest in developing alternative and complementary green eco-biocides and disinfection innovation. Fungi present challenges for cleaning, disinfection and sterilization of reusable medical devices such as endoscopes where they (example, Aspergillus and Candida species) can be protected when harboured in build-up biofilm from lethal processing. Information on the efficacy of established disinfection and sterilization technologies to address fungal pathogens including bottleneck areas that present high risk to patients is lacking. There is a need to address risk mitigation and modelling to inform efficacy of appropriate intervention technologies that must consider all contributing factors where there is potential to adopt digital technologies to enable real-time analysis of big data, such as use of artificial intelligence and machine learning. International consensus on standardised protocols for developing and reporting on appropriate alternative eco-solutions must be reached, particularly in order to address fungi with increasing drug resistance where research and innovation can be enabled using a One Health approach.


Subject(s)
COVID-19 , Disinfectants , Mycoses , Animals , Humans , Antifungal Agents , Artificial Intelligence , COVID-19/prevention & control , Azoles , Disinfectants/pharmacology , Water , Fungi
12.
Int J Mol Sci ; 23(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955708

ABSTRACT

Functional somatic syndromes are increasingly diagnosed in chronically ill patients presenting with an array of symptoms not attributed to physical ailments. Conditions such as chronic fatigue syndrome, fibromyalgia syndrome, or irritable bowel syndrome are common disorders that belong in this broad category. Such syndromes are characterised by the presence of one or multiple chronic symptoms including widespread musculoskeletal pain, fatigue, sleep disorders, and abdominal pain, amongst other issues. Symptoms are believed to relate to a complex interaction of biological and psychosocial factors, where a definite aetiology has not been established. Theories suggest causative pathways between the immune and nervous systems of affected individuals with several risk factors identified in patients presenting with one or more functional syndromes. Risk factors including stress and childhood trauma are now recognised as important contributors to chronic pain conditions. Emotional, physical, and sexual abuse during childhood is considered a severe stressor having a high prevalence in functional somatic syndrome suffers. Such trauma permanently alters the biological stress response of the suffers leading to neuroexcitatory and other nerve issues associated with chronic pain in adults. Traumatic and chronic stress results in epigenetic changes in stress response genes, which ultimately leads to dysregulation of the hypothalamic-pituitary axis, the autonomic nervous system, and the immune system manifesting in a broad array of symptoms. Importantly, these systems are known to be dysregulated in patients suffering from functional somatic syndrome. Functional somatic syndromes are also highly prevalent co-morbidities of psychiatric conditions, mood disorders, and anxiety. Consequently, this review aims to provide insight into the role of the nervous system and immune system in chronic pain disorders associated with the musculoskeletal system, and central and peripheral nervous systems.


Subject(s)
Chronic Pain , Fatigue Syndrome, Chronic , Fibromyalgia , Peripheral Nervous System Diseases , Adult , Chronic Pain/etiology , Fatigue Syndrome, Chronic/etiology , Humans , Neurogenic Inflammation , Neuroimmunomodulation , Peripheral Nervous System Diseases/etiology
13.
J Fungi (Basel) ; 8(3)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35330292

ABSTRACT

Mushrooms have been used as traditional medicine for millennia, fungi are the main natural source of psychedelic compounds. There is now increasing interest in using fungal active compounds such as psychedelics for alleviating symptoms of mental health disorders including major depressive disorder, anxiety, and addiction. The anxiolytic, antidepressant and anti-addictive effect of these compounds has raised awareness stimulating neuropharmacological investigations. Micro-dosing or acute dosing with psychedelics including Lysergic acid diethylamide (LSD) and psilocybin may offer patients treatment options which are unmet by current therapeutic options. Studies suggest that either dosing regimen produces a rapid and long-lasting effect on the patient post administration with a good safety profile. Psychedelics can also modulate immune systems including pro-inflammatory cytokines suggesting a potential in the treatment of auto-immune and other chronic pain conditions. This literature review aims to explore recent evidence relating to the application of fungal bioactives in treating chronic mental health and chronic pain morbidities.

14.
Antibiotics (Basel) ; 10(11)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34827221

ABSTRACT

Antimicrobial resistance (AMR) remains one of the greatest public health-perturbing crises of the 21st century, where species have evolved a myriad of defence strategies to resist conventional therapy. The production of extended-spectrum ß-lactamase (ESBL), AmpC and carbapenemases in Gram-negative bacteria (GNB) is one such mechanism that currently poses a significant threat to the continuity of first-line and last-line ß-lactam agents, where multi-drug-resistant GNB currently warrant a pandemic on their own merit. The World Health Organisation (WHO) has long recognised the need for an improved and coordinated global effort to contain these pathogens, where two factors in particular, international travel and exposure to antimicrobials, play an important role in the emergence and dissemination of antibiotic-resistant genes. Studies described herein assess the resistance patterns of isolated nosocomial pathogens, where levels of resistance were detected using recognised in vitro methods. Additionally, studies conducted extensively investigated alternative biocide (namely peracetic acid, triameen and benzalkonium chloride) and therapeutic options (specifically 1,10-phenanthroline-5,6-dione), where the levels of induced endotoxin from E. coli were also studied for the latter. Antibiotic susceptibility testing revealed there was a significant association between multi-drug resistance and ESBL production, where the WHO critical-priority pathogens, namely E. coli, K. pneumoniae, A. baumannii and P. aeruginosa, exhibited among the greatest levels of multi-drug resistance. Novel compound 1,10-phenanthroline-5,6-dione (phendione) shows promising antimicrobial activity, with MICs determined for all bacterial species, where levels of induced endotoxin varied depending on the concentration used. Tested biocide agents show potential to act as intermediate-level disinfectants in hospital settings, where all tested clinical isolates were susceptible to treatment.

15.
Animals (Basel) ; 11(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34573548

ABSTRACT

The objective of this study was to determine the benefit of pre-milking teat foam disinfection on the prevention of new infections by contagious and environmental bacteria in two spring calving herds managed outdoors (Herd 1 [H1]; 331 cows and Herd 2 [H2]; 142 cows). Four pre-milking teat preparation treatments were applied post calving; with each herd receiving two treatments; using a split udder design (for approx. 15 weeks). These treatments included; (1) 'water wash, foam application and dry wipe (WFD) in H1'; (2) 'water wash and dry wipe (WD)' in H1; (3) 'foam application and dry wipe (FD)' in H2; (4) 'no teat cleaning preparation (NP)' in H2. Individual quarter foremilk samples were collected on four occasions and all clinical and sub-clinical cases were recorded. The mean SCC of quarter foremilk samples was 134 × 103 cells/mL and 127 × 103 cells/mL for WD and WFD, respectively, and 109 × 103 cells/mL and 89 × 103 cells/mL for NP and FD, respectively (p > 0.05). Lower bacterial counts were observed on teat skin that received a foaming treatment. Pre-milking teat disinfection using a foaming product may be of little benefit, in early lactation, for a pasture-based dairy herd.

16.
Sci Total Environ ; 800: 149545, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34399333

ABSTRACT

Antimicrobial resistance (AMR) is recognised globally as one of the greatest threats to human and animal health; thus, discovery of alternative antibacterial agents to address AMR is a priority challenge. This study constitutes the first report of a low-melting temperature, polymer- extrusion process for the smart delivery of thermally-sensitive antimicrobial bioactives, including generally-regarded-as-safe (GRAS) bioactives derived from various sources. Bioactives were assessed before and after extrusion by determining their respective minimum inhibitory concentrations (MIC). WHO-priority AMR-bacterial isolates causing zoonotic infections were evaluated along with use of standard ATCC strains. Findings revealed that this copolymer method was capable of delivering thermally-sensitive bioactives with varying degrees of growth inhibition against the AMR-bacterial strains. The extrusion process was found to increase the effect of nisin against MRSA (4-fold increase) and L. monocytogenes (6.4-fold increase), silver nitrate (AgNO3) against E. coli (3.6-fold increase) and S. epidermidis (1.25-fold increase), and chitosan against S. aureus (1.25-fold). Findings show the potential applicability of this polymer extrusion process for developing future bioactive-loaded polymer compounds; thus, highlighting the potential of converging bio-based industry with novel materials for enabling 'One-Health' solutions.


Subject(s)
Escherichia coli , Staphylococcus aureus , Animals , Bacteria , Humans , Polymers , Temperature
17.
Curr Opin Environ Sci Health ; 23: 100290, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34250323

ABSTRACT

The emergence of severe acute respiratory disease (SARS-CoV-2) variants that cause coronavirus disease is of global concern. Severe acute respiratory disease variants of concern (VOC) exhibiting greater transmissibility, and potentially increased risk of hospitalization, severity and mortality, are attributed to molecular mutations in outer viral surface spike proteins. Thus, there is a reliance on using appropriate counter-disease measures, including non-pharmaceutical interventions and vaccination. The best evidence suggests that the use of frontline biocides effectively inactivate coronavirus similarly, including VOC, such as 202012/01, 501Y.V2 and P.1 that have rapidly replaced the wild-type variant in the United Kingdom, South Africa and Brazil, respectively. However, this review highlights that efficacy of VOC-disinfection will depend on the type of biocide and the parameters governing the activity. VOC are likely to be similar in size to the wild-type strain, thus implying that existing guidelines for use and re-use of face masks post disinfection remain relevant. Monitoring to avoid injudicious use of biocides during the coronavirus disease era is required as prolonged and excessive biocide usage may negatively impact our receiving environments; thus, highlighting the potential for alternative more environmental-friendly sustainable biocide solutions. Traditional biocides may promote cross-antimicrobial resistance to antibiotics in problematical bacteria. The existing filtration efficacy of face masks is likely to perform similarly for VOC due to similar viral size; however, advances in face mask manufacturing by way incorporating new anti-viral materials will potentially enhance their design and functionality for existing and potential future pandemics.

18.
Pathogens ; 10(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34068912

ABSTRACT

Antimicrobial resistance is one of the greatest dangers to public health of the 21st century, threatening the treatment and prevention of infectious diseases globally. Disinfection, the elimination of microbial species via the application of biocidal chemicals, is essential to control infectious diseases and safeguard animal and human health. In an era of antimicrobial resistance and emerging disease, the effective application of biocidal control measures is vital to protect public health. The COVID-19 pandemic is an example of the increasing demand for effective biocidal solutions to reduce and eliminate disease transmission. However, there is increasing recognition into the relationship between biocide use and the proliferation of Antimicrobial Resistance species, particularly multidrug-resistant pathogens. The One Health approach and WHO action plan to combat AMR require active surveillance and monitoring of AMR species; however, biocidal resistance is often overlooked. ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens and numerous fungal species have demonstrated drug and biocidal resistance where increased patient mortality is a risk. Currently, there is a lack of information on the impact of biocide application on environmental habitats and ecosystems. Undoubtedly, the excessive application of disinfectants and AMR will merge to result in secondary disasters relating to soil infertility, loss of biodiversity and destruction of ecosystems.

19.
Chemosphere ; 280: 130764, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33971423

ABSTRACT

Although widely accepted as a water sterilisation technique, chlorination results in the production of potentially harmful by-products, mainly Trihalomethanes. Furthermore, the chlorination process requires specialised infrastructure, management and high costs. In this research paper a potential alternative sterilisation technique was investigated. This rapid three-step process utilized Goethite Nanoparticles and the photosensitising capabilities of a xanthene dye. Rose Bengal (RB) a compound primarily used as a stain to diagnose damaged tissue in the eye was utilized under visible light excitation to sterilise water containing gram-positive Staphylococcus aureus and Bacillus cereus. Bacterial reductions (cfu/ml) of up to 6log10 are reported at RB concentrations of 0.5 mg/L and 10 mg/L for S. aureus and B. cereus, respectively. Goethite Nanoparticles (GNP's), an iron oxyhydroxide, were synthesised by co-precipitation of iron salts and used to adsorb RB post-sterilisation. Poly-vinyl Alcohol (PVA) functionalised GNP's were synthesised to highlight the adsorbent capabilities of the GNP surface. The adsorption capacity for uncoated GNPs was 476.19 mg/g, this reduced to 170.4 mg/g for PVA-GNP's, highlighting the highly porous nature of the synthesised GNP surface. Adsorption was optimal in slightly acidic conditions (pH5-6). The adsorption parameters best followed Lagergens Pseudo-second order kinetics with correlation coefficients close to unity. At the highest envisaged RB concentration (10 mg/L) approximately 20 mg/L GNP's was required to remove the dye from solution post-treatment. Flame Atomic Absorption analysis of the water post-removal revealed Iron concentrations of 0.058 mg/L. This correlates to removal efficacy of 99.71% with residual iron levels below the EU recommended limit of 0.2 mg/L.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Water Purification , Adsorption , Anti-Bacterial Agents , Hydrogen-Ion Concentration , Iron Compounds , Kinetics , Minerals , Staphylococcus aureus , Xanthenes
20.
Infect Dis Rep ; 13(2): 348-366, 2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33920450

ABSTRACT

Fungal skin infections and iatrogenic disease of companion animals continue to be an ongoing issue for veterinarians, where misdiagnosis or inapt medical treatment result in secondary conditions within animals. The widespread use of antifungals in both modern medicine and agriculture has resulted in concomitant resistance in species, where zoonotic transfer poses a risk to public health. Studies described herein assess the resistance of pathogenic species isolated from companion animals to a battery of conventional antimicrobial agents. Levels of resistance were detected using recognised in vitro methods, where additional novel therapeutic and biocide options were also extensively investigated. Results show high levels of resistance to the three main families of antifungal agents, namely caspofungin, Amp B and fluconazole. Resistance in Candida, Cryptococcal, Aspergillus and Trichophyton species is described herein, highlighting the need for defined species-specific antifungal breakpoints, and for Malassezia and Wickerhamomyces anomalus species which also have zoonotic potential. Novel compound phendione showed promising antimicrobial activity, with MICs determined for both fungal and bacterial species. The biocidal options investigated also showed potential to act as intermediate-level disinfectants, where peracetic acid proved most effective against fungal spore formers.

SELECTION OF CITATIONS
SEARCH DETAIL
...