Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-488969

ABSTRACT

The ability of SARS-CoV-2 to be primed for viral entry by the host cell protease furin has become one of the most investigated of the numerous transmission and pathogenicity features of the virus. SARS-CoV-2 The variant B.1.1.529 (Omicron) emerged in late 2020 and has continued to evolve and is now present in several distinct sub-variants. Here, we analyzed the "furin cleavage site" of the spike protein of SARS-CoV-2 B.1.1.529 (Omicron variant) in vitro, to assess the role of two key mutations (spike, N679K and P681H) that are common across all subvariants compared to the ancestral B.1 virus and other notable lineages. We observed significantly increased intrinsic cleavability with furin compared to an original B lineage virus (Wuhan-Hu1), as well as to two variants, B.1.1.7 (Alpha) and B.1.617 (Delta) that subsequently had wide circulation. Increased furin-mediated cleavage was attributed to the N679K mutation, which lies outside the conventional furin binding pocket. Our findings suggest that B.1.1.529 (Omicron variant) has gained genetic features linked to intrinsic furin cleavability, in line with its evolution within the population as the COVID-19 pandemic has proceeded.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-483104

ABSTRACT

We address the challenge of understanding how hydrophobic interactions are encoded by fusion peptide sequences within coronavirus (CoV) spike proteins. Within the fusion peptides of SARS-CoV-2 and MERS-CoV, a largely conserved peptide sequence called FP1 (SFIEDLLFNK and SAIEDLLFDK in SARS-2 and MERS, respectively) has been proposed to play a key role in encoding hydrophobic interactions that drive viral-host cell membrane fusion. While a non-polar triad (LLF) is common to both FP1 sequences, and thought to dominate the encoding of hydrophobic interactions, FP1 from SARS and MERS differ in two residues (Phe 2 versus Ala 2 and Asn 9 versus Asp 9, respectively). Here we explore if single molecule force measurements can quantify hydrophobic interactions encoded by FP1 sequences, and then ask if sequence variations between FP1 from SARS and MERS lead to significant differences in hydrophobic interactions. We find that both SARS-2 and MERS wild-type FP1 generate measurable hydrophobic interactions at the single molecule level, but that SARS-2 FP1 encodes a substantially stronger hydrophobic interaction than its MERS counterpart (1.91 {+/-} 0.03 nN versus 0.68 {+/-} 0.03 nN, respectively). By performing force measurements with FP1 sequences with single amino acid substitutions, we determine that a single residue mutation (Phe 2 versus Ala 2) causes the almost threefold difference in the hydrophobic interaction strength generated by the FP1 of SARS-2 versus MERS, despite the presence of LLF in both sequences. Infrared spectroscopy and circular dichroism measurements support the proposal that the outsized influence of Phe 2 versus Ala 2 on the hydrophobic interaction arises from variation in the secondary structure adopted by FP1. Overall, these insights reveal how single residue diversity in viral fusion peptides, including FP1 of SARS-CoV-2 and MERS-CoV, can lead to substantial changes in intermolecular interactions proposed to play a key role in viral fusion, and hint at strategies for regulating hydrophobic interactions of peptides in a range of contexts. SIGNIFICANCEFusion of coronaviruses (CoVs) and host cells is mediated by the insertion of the fusion peptide (FP) of the viral spike protein into the host cell membrane. Hydrophobic interactions between FPs with their host cell membranes regulate the viral membrane fusion process and are key to determining infection ability. However, it is not fully understood how the amino acid sequences in FPs mediate hydrophobic interactions. We use single-molecule force measurements to characterize hydrophobic interactions of FPs from SARS-CoV-2 and MERS-CoV. Our findings provide insight into the mechanisms by which the amino acid composition of FPs encodes hydrophobic interactions and their implications for fusion activity critical to the spread of infection.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-482731

ABSTRACT

In coronaviruses, the fusion peptide (FP) is situated within the membrane fusion domain of the spike protein, becoming exposed following proteolytic cleavages at the S1/S2 and S2 sites. After receptor binding-induced conformational changes, the FP penetrates the host cell membrane and mediates membrane fusion. Previous work has revealed the importance of calcium for SARS-CoV-1 FP structural stability and host membrane insertion. In this follow-up study, we systematically introduced charge-neutralizing alanine mutations in the negatively charged amino acids within the SARS-CoV-1 fusion peptide (E801A, D802A, D812A, E821A, D825A, D830A) to identify residues that likely bind to calcium. We assayed fusion competency by performing a syncytia-formation assay in VeroE6 cells and infectivity using pseudoparticles. The loss of single negatively charged residues D812 or D830 greatly reduced syncytia formation and produced noninfectious pseudoparticles. Furthermore, we observed a calcium-dependent decrease in the infectivity of the D825A and D830A pseudoparticles, as well as fewer syncytia in the cells expressing E821A/D825A double mutant FP. To clarify which residue pairs in the FP are most likely to bind calcium and promote host membrane insertion, we carried out molecular dynamics (MD) simulations of the various FP constructs. From our modeling, residue E801 is predicted to pair with either D830 or D802 to coordinate one calcium; a second calcium ion likely pairs residue E821 with either D812 or D825. We propose a model of bimodal calcium binding in the FP1 and FP2 domains, which anchors the SARS-CoV-1 FP in the host cell membrane to promote membrane insertion and fusion.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-473025

ABSTRACT

The Coronaviridae is a highly diverse virus family, with reservoir hosts in a variety of wildlife species that encompass bats, birds and small mammals, including rodents. Within the taxonomic group alphacoronavirus, certain sub-genera (including the luchacoviruses) have phylogenetically distinct spike proteins, which remain essentially uncharacterized. Using in vitro and computational techniques, we analyzed the spike protein of the rodent coronavirus AcCoV-JC34 from the sub-genus luchacovirus, previously identified in Apodemus chevrieri (Chevriers field mouse). We show that AcCoV-JC34--unlike the other luchacoviruses--has a putative furin cleavage site (FCS) within its spike S1 domain, close to the S1/S2 interface. The pattern of basic amino acids within the AcCoV-JC34 FCS (-RR-R-) is identical to that found in "pre-variant" SARS-CoV-2--which is in itself atypical for an FCS, and suboptimal for furin cleavage. Our analysis shows that, while containing an -RR-R-motif, the AcCoV-JC34 spike "FCS" is not cleaved by furin (unlike for SARS-CoV-2), suggesting the possible presence of a progenitor sequence for viral emergence from a distinct wildlife host.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-463106

ABSTRACT

Effective small molecule therapies to combat the SARS-CoV-2 infection are still lacking as the COVID-19 pandemic continues globally. High throughput screening assays are needed for lead discovery and optimization of small molecule SARS-CoV-2 inhibitors. In this work, we have applied viral pseudotyping to establish a cell-based SARS-CoV-2 entry assay. Here, the pseudotyped particles (PP) contain SARS-CoV-2 spike in a membrane enveloping both the murine leukemia virus (MLV) gag-pol polyprotein and luciferase reporter RNA. Upon addition of PP to HEK293-ACE2 cells, the SARS-CoV-2 spike protein binds to the ACE2 receptor on the cell surface, resulting in priming by host proteases to trigger endocytosis of these particles, and membrane fusion between the particle envelope and the cell membrane. The internalized luciferase reporter gene is then expressed in cells, resulting in a luminescent readout as a surrogate for spike-mediated entry into cells. This SARS-CoV-2 PP entry assay can be executed in a biosafety level 2 containment lab for high throughput screening. From a collection of 5,158 approved drugs and drug candidates, our screening efforts identified 7 active compounds that inhibited the SARS-CoV-2-S PP entry. Of these seven, six compounds were active against live replicating SARS-CoV-2 virus in a cytopathic effect assay. Our results demonstrated the utility of this assay in the discovery and development of SARS-CoV-2 entry inhibitors as well as the mechanistic study of anti-SARS-CoV-2 compounds. Additionally, particles pseudotyped with spike proteins from SARS-CoV-2 B.1.1.7 and B.1.351 variants were prepared and used to evaluate the therapeutic effects of viral entry inhibitors.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-450632

ABSTRACT

Based on its predicted ability to affect transmissibility and pathogenesis, surveillance studies have highlighted the role of a specific mutation (P681R) in the S1/S2 furin cleavage site of the SARS-CoV-2 spike protein. Here we analyzed A.23.1, first identified in Uganda, as a P681R-containing virus several months prior to the emergence of B.1.617.2 (Delta variant). We performed assays using peptides mimicking the S1/S2 from A.23.1 and B.1.617 and observed significantly increased cleavability with furin compared to both an original B lineage (Wuhan-Hu1) and B.1.1.7 (Alpha variant). We also performed cell-cell fusion and functional infectivity assays using pseudotyped particles and observed an increase in activity for A.23.1 compared to an original B lineage spike. However, these changes in activity were not reproduced in the B lineage spike bearing only the P681R substitution. Our findings suggest that while A.23.1 has increased furin-mediated cleavage linked to the P681R substitution, this substitution needs to occur on the background of other spike protein changes to enable its functional consequences.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-438731

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent causing the COVID-19 pandemic. SARS-CoV-2 B.1.1.7 (Alpha), a WHO variant of concern (VOC) first identified in the UK in late 2020, contains several mutations including P681H in the spike S1/S2 cleavage site, which is predicted to increase cleavage by furin, potentially impacting the viral cell entry. Here, we studied the role of the P681H mutation in B.1.1.7 cell entry. We performed assays using fluorogenic peptides mimicking the Wuhan-Hu-1 and B.1.1.7 S1/S2 sequence and observed no significant difference in furin cleavage. Functional assays using pseudoparticles harboring SARS-CoV-2 spikes and cell-to-cell fusion assays demonstrated no differences between Wuhan-Hu-1, B.1.1.7 or a P681H point mutant. Likewise, we observed no differences in viral growth between USA-WA1/2020 and a B.1.1.7 isolate in cell culture. Our findings suggest that while the B.1.1.7 P681H mutation may slightly increase S1/S2 cleavage this does not significantly impact viral entry or cell-cell spread. HighlightsO_LISARS-CoV-2 B.1.1.7 VOC has a P681H mutation in the spike that is predicted to enhance viral infection C_LIO_LIP681H does not significantly impact furin cleavage, viral entry or cell-cell spread C_LIO_LIOther mutations in the SARS-CoV-2 B.1.1.7 VOC may account for increased infection rates C_LI Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=134 SRC="FIGDIR/small/438731v2_ufig1.gif" ALT="Figure 1"> View larger version (33K): org.highwire.dtl.DTLVardef@c148d7org.highwire.dtl.DTLVardef@1954eeeorg.highwire.dtl.DTLVardef@171130dorg.highwire.dtl.DTLVardef@99bd45_HPS_FORMAT_FIGEXP M_FIG C_FIG

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-192310

ABSTRACT

{beta}-Coronaviruses are a family of positive-strand enveloped RNA viruses that include the severe acute respiratory syndrome-CoV2 (SARS-CoV2). While much is known regarding their cellular entry and replication pathways, their mode of egress remains uncertain; however, this is assumed to be via the biosynthetic secretory pathway by analogy to other enveloped viruses. Using imaging methodologies in combination with virus-specific reporters, we demonstrate that {beta}-Coronaviruses utilize lysosomal trafficking for egress from cells. This pathway is regulated by the Arf-like small GTPase Arl8b; thus, virus egress is insensitive to inhibitors of the biosynthetic secretory pathway. Coronavirus infection results in lysosome deacidification, inactivation of lysosomal degradation and disruption of antigen presentation pathways. This coronavirus-induced exploitation of lysosomes provides insights into the cellular and immunological abnormalities observed in patients and suggests new therapeutic modalities.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-214577

ABSTRACT

COVID-19 is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus (CoV)-2 (SARS-CoV-2). The virus is responsible for an ongoing pandemic and concomitant public health crisis around the world. While vaccine development is proving to be highly successful, parallel drug development approaches are also critical in the response to SARS-CoV-2 and other emerging viruses. Coronaviruses require Ca2+ ions for host cell entry and we have previously shown that Ca2+ modulates the interaction of the viral fusion peptide with host cell membranes. In an attempt to accelerate drug development, we tested a panel of L-type calcium channel blocker (CCB) drugs currently developed for other conditions, to determine whether they would inhibit SARS-CoV-2 infection in cell culture. All the CCBs tested showed varying degrees of inhibition, with felodipine and nifedipine strongly limiting SARS-CoV-2 entry and infection in epithelial lung cells at concentrations where cell toxicity was minimal. Further studies with pseudo-typed particles displaying the SARS-CoV-2 spike protein suggested that inhibition occurs at the level of virus entry. Overall, our data suggest that certain CCBs have potential to treat SARS-CoV-2 infections and are worthy of further examination for possible treatment of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...