Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(6): e0179544, 2017.
Article in English | MEDLINE | ID: mdl-28662039

ABSTRACT

Bacteria exposed to host serum are subject to the antibacterial effects to the complement system. However, pathogenic microorganisms have evolved mechanisms of evading this immune attack. We have previously demonstrated that at least two R. conorii antigens, RC1281/Adr1 and OmpB ß-peptide, contribute to the evasion of complement-mediated killing by binding the complement regulatory proteins vitronectin and factor H. RC1282/Adr2, a protein related to Adr1, is predicted to share similar structural features, suggesting that this protein may also contribute to evasion of complement-mediated killing. Interestingly, the R. prowazekii Adr1 and Adr2(RP828) proteins were originally found to interact with host cell surface proteins, suggesting their putative roles as adhesins in this pathogenic rickettsial species. In this study, we expressed both R. conorii and R. prowazekii Adr2 on the surface of a non-adherent, serum-sensitive strain of E. coli to examine the potential role of this protein to mediate evasion of complement-mediated killing and adherence to host cells. We demonstrate that, similar to R. conorii Adr1, R. conorii and R. prowazekii Adr2 are sufficient to mediate serum resistance and to promote interaction with the host complement regulator vitronectin. Furthermore, we demonstrate that expression of Adr2 in a non-adherent strain of E. coli is insufficient to mediate adherence to cultured mammalian endothelial cells. Together, our data demonstrate that the R. conorii and R. prowazekii Adr2 protein does not participate in the interactions with mammalian cells, but rather, participates in the evasion of killing by complement.


Subject(s)
Bacterial Adhesion/physiology , Bacterial Proteins/genetics , Complement System Proteins/physiology , Escherichia coli/genetics , Rickettsia/metabolism
2.
Infect Immun ; 84(3): 790-7, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26755154

ABSTRACT

Scientific analysis of the genus Rickettsia is undergoing a rapid period of change with the emergence of viable genetic tools. The development of these tools for the mutagenesis of pathogenic bacteria will permit forward genetic analysis of Rickettsia pathogenesis. Despite these advances, uncertainty still remains regarding the use of plasmids to study these bacteria in in vivo mammalian models of infection, namely, the potential for virulence changes associated with the presence of extrachromosomal DNA and nonselective persistence of plasmids in mammalian models of infection. Here, we describe the transformation of Rickettsia conorii Malish 7 with the plasmid pRam18dRGA[AmTrCh]. Transformed R. conorii stably maintains this plasmid in infected cell cultures, expresses the encoded fluorescent proteins, and exhibits growth kinetics in cell culture similar to those of nontransformed R. conorii. Using a well-established murine model of fatal Mediterranean spotted fever, we demonstrate that R. conorii(pRam18dRGA[AmTrCh]) elicits the same fatal outcomes in animals as its untransformed counterpart and, importantly, maintains the plasmid throughout infection in the absence of selective antibiotic pressure. Interestingly, plasmid-transformed R. conorii was readily observed both in endothelial cells and within circulating leukocytes. Together, our data demonstrate that the presence of an extrachromosomal DNA element in a pathogenic rickettsial species does not affect either in vitro proliferation or in vivo infectivity in models of disease and that plasmids such as pRam18dRGA[AmTrCh] are valuable tools for the further genetic manipulation of pathogenic rickettsiae.


Subject(s)
Boutonneuse Fever/microbiology , Plasmids/metabolism , Rickettsia conorii/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Disease Models, Animal , Endothelial Cells/microbiology , Humans , Male , Mice , Mice, Inbred C3H , Plasmids/genetics , Rickettsia conorii/pathogenicity , Rickettsia conorii/physiology , Transformation, Genetic , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...