Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 54(26): 7904-11, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26368962

ABSTRACT

In an effort to optimize magnetic field detection sensitivities, the Faraday responsivity vector, which determines the relationship between the Faraday rotation angle and an externally applied magnetic field, was investigated in magneto-optic sensors based on bismuth-doped iron-garnet films. Under externally applied fields, Faraday rotation is produced principally by domain rotation and domain wall motion, whose relative contributions depend on the domain geometry and the direction of laser propagation. When optically probed along a principal magnetization axis, Faraday rotation is driven by a single magnetization mechanism, and the responsivity is linearized (reduced to an effective Verdet constant). When the films are probed along an oblique angle to the principal axes, the relationship between the Faraday rotation and the external field becomes tensorial and much more complex. Although this may lead to more complicated phenomena, the interplay of domain rotation and domain wall bowing can be exploited to improve responsivity or bandwidth. A generalized model for the magnitude and direction of the responsivity vector is formulated, which gives predictions that are consistent with the experimental data. Applications to arrayed sensors and three-axis field measurements are discussed.

2.
Opt Lett ; 32(8): 964-6, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17375169

ABSTRACT

The sensitivity of an electro-optic (EO) field sensor depends inversely on the dielectric constant of the nonlinear crystal. In EO sensors based on lithium niobate the effective value of this dielectric constant is affected by dielectric relaxation effects and is identified with its smaller, high-frequency component. Because of this effect, the EO modulation is significantly enhanced, thus improving the field strength sensitivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...