Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
Add more filters










Publication year range
1.
Nat Prod Res ; : 1-9, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949651

ABSTRACT

This study aimed to investigate the potential anti-inflammatory properties of aqueous extract of Marrubium vulgare (AEMV) using various animal models. Several inflammatory models including xylene-induced ear edoema, carrageenan-induced paw edoema, and Freund's adjuvant-induced arthritis were employed to evaluate the anti-inflammatory effects of AEMV. LC-MS/MS of AEMV revealed that the major component was Marrubiin, a diterpenoid lactone. AEMV demonstrated significant anti-inflammatory effects in all animal models tested. It effectively reduced ear and paw edoema induced by xylene and carrageenan, respectively. Furthermore, AEMV attenuated arthritis symptoms and hyperalgesia in rats with Freund's adjuvant-induced arthritis. Biochemical analyzes revealed normalisation of inflammatory markers, including C-reactive protein (CRP) levels, in treated animals. The findings suggest that AEMV possesses promising anti-inflammatory properties, supporting its potential therapeutic application in inflammatory conditions such as arthritis. Further investigations are needed to clarify the underlying mechanisms and optimise dosing regimens for clinical use.

2.
Molecules ; 29(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39064881

ABSTRACT

Cannabis sativa L. is a plant that has been cultivated since ancient times thanks to its various uses. Even its extraction products, such as essential oil and hydrolate, having a varied chemical composition and rich in bioactive components, find wide use in different sectors, gathering ever-increasing interest over time. In this work, the essential oil of Cannabis sativa L. cv. Carmagnola was characterized by using Gas Chromatography/Mass Spectrometry (GC/MS) and, for the first time, the chemical profile of the hydrolate was also described through different analytical techniques such as Large-Volume Injection Gas Chromatography/Mass Spectrometry (LVI-GC/MS) and Direct Immersion-Solid Phase Microextraction-Gas Chromatography/Mass spectrometry (DI-SPME-GC/MS), in order to provide a more complete compositional profile. The results of the analyses conducted on the hydrolate highlighted a high content of α-terpineol; on the other side, in the essential oil, a prevalence of monoterpenes, with α-pinene and limonene as the characterizing components, was detected. Both matrices were also investigated to evaluate their cytotoxic activity by using a panel of cancer cell lines derived from different histotypes such as melanoma (A375, LOX IMVI), non-small cell lung cancer (H1299, A549), colon (HT29) and pancreatic (L3.6) cancer cell lines. The obtained data demonstrated that essential oil was more effective than hydrolate in terms of reduction in cell viability.


Subject(s)
Cannabis , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Solid Phase Microextraction , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/analysis , Gas Chromatography-Mass Spectrometry/methods , Cannabis/chemistry , Humans , Solid Phase Microextraction/methods , Cell Line, Tumor , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Cell Survival/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
3.
Protoplasma ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940918

ABSTRACT

Salt-induced stress poses a significant barrier to agricultural productivity by impeding crop growth. Presently, environmentalists are dedicated to safeguarding food security by enhancing agricultural yields in challenging environments. Biostimulants play a crucial role in mitigating abiotic stresses in crop production, and among these, plant essential oils (EOs) stand out as organic substances with diverse biological effects on living organisms. Among the natural promoters of plant growth, Rosmarinus officinalis L. essential oil (RoEO) has gained considerable attention. Although the manifold effects of essential oils (EOs) on plant growth have been extensively demonstrated, their impact on salt stress tolerance in durum wheat seedlings remains unexplored. This investigation was undertaken to evaluate the biostimulatory capabilities of RoEO on the durum wheat cultivar "Mahmoudi." The effects of three RoEO concentrations (1, 2.5, and 5 ppm) on seed germination, growth establishment, and the induction of salt resistance under salinity conditions (150 mM NaCl) were tested. At 5 ppm, RoEO enhanced seedlings' tolerance to salinity by improving growth and reducing membrane deterioration and oxidative stress-induced damage. The expression profile analyses of seven stress-related genes (TdNHX1, TdSOS1, TdSOD, TdCAT, TdGA20-ox1, TdNRT2.1, and TdGS) using RT-qPCR showed enhancement of several important genes in durum wheat seedlings treated with 5 ppm RoEO, even under control conditions, which may be related to salt stress tolerance. The results indicate that the application of RoEO suggests a possible alternative strategy to increase salt tolerance in durum wheat seedlings towards better growth quality, thus increasing ROS scavenging and activation of antioxidant defense.

4.
Chem Biodivers ; : e202400591, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795371

ABSTRACT

Assessment of Moroccan Cannabis sativa Seed Oil: Chemical Analysis and Evaluation of Antioxidant, Toxicological, and Antinociceptive Effects. by K. Raoui et al., Cadi Ayyad University, Marrakech, Morocco. Cannabis sativa L., locally known as "El kif", belongs to the Cannabaceae family. This study aims to conduct a chemical analysis of Cannabis sativa seed oil (CSSO) and assess its acute toxicity, antioxidant properties, and analgesic effects. The chemical analysis was performed using gas chromatography and mass spectrometry (GC/MS) to identify fatty acids (FAs) contents. Antioxidant activity was evaluated in vitro using the (2,2-diphenyl-1-picrylhydrazyl) DPPH radical scavenging method and the (ferric reducing antioxidant power) FRAP method. Concurrently, acute toxicity, along with antinociceptive activity, was studied through three distinct animal models: writhing test, formalin test, and hot plate test. The results revealed that linoleic acid, oleic acid, α-linolenic acid, and palmitic acid were the main components of CSSO. The LD50 of CSSO was greater than 5 g/kg, indicating low toxicity. Additionally, CSSO exhibited a significant content of flavonoids and total polyphenols, along with notable antioxidant activity with important values. The results indicated a significant increase in thermal stimulus latency, a reduction in the number of writhes induced by acetic acid, and a decrease in licking time in both phases of the formalin test. In conclusion, this study suggests promising results for CSSO, emphasizing its potential as a therapeutic agent.

5.
Foods ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38790803

ABSTRACT

Illicium verum, commonly known as star anise, represents one of the notable botanical species and is recognized for its rich reservoir of diverse bioactive compounds. Beyond its culinary application as a spice, this plant has been extensively utilized in traditional medicine. Given the contemporary emphasis on incorporating natural resources into food production, particularly essential oils, to enhance sensory attributes and extend shelf life, our study seeks to elucidate the chemical composition and evaluate the antibacterial (in vitro, in situ) and insecticidal properties of Illicium verum essential oil (IVEO). Also, microbiological analyses of pumpkin sous vide treated with IVEO after inoculation of Salmonella enterica were evaluated after 1 and 7 days of study. GC/MS analysis revealed a significantly high amount of (E)-anethole (88.4%) in the investigated EO. The disc diffusion method shows that the antibacterial activity of the IVEO ranged from 5.33 (Streptococcus constellatus) to 10.33 mm (Citrobacter freundii). The lowest minimal inhibition concentration was found against E. coli and the minimum biofilm inhibition concertation was found against S. enterica. In the vapor phase, the best antimicrobial activity was found against E. coli in the pears model and against S. sonei in the beetroot model. The application of the sous vide method in combination with IVEO application decreased the number of microbial counts and eliminated the growth of S. enterica. The most isolated microbiota identified from the sous vide pumpkin were Bacillus amyloliquefaciens, B. cereus, B. licheniformis, and Ralstonia picketii. Modifications to the protein composition of biofilm-forming bacteria S. enterica were suggested by the MALDI TOF MS instigations. The IVEO showed insecticidal potential against Harmonia axyridis. Thanks to the properties of IVEO, our results suggest it can be used in the food industry as a natural supplement to extend the shelf life of foods and as a natural insecticide.

6.
Plants (Basel) ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38592769

ABSTRACT

The preservation of agricultural biodiversity and socioeconomic development are relevant both to enhance domestic production and to support innovation. In the search for new biomolecules, we have focused on the "Carciofo Ortano" landrace, growth in the northern part of the Lazio region. Artichoke cultivation generates substantial by-products, including leaves, stems, and roots, which could serve as valuable sources of biomolecules and prebiotic dietary fiber. To valorize the leaf waste of the "Carciofo Ortano" landrace, a multidisciplinary approach was applied. Chemical analysis using HPLC-DAD identified mono-O- and di-O-caffeoylquinic acids and the sesquiterpene cynaropicrin in all artichoke leaf extracts. SPME-GC/MS analyses detected aliphatic alcohols in the fresh leaf samples. Antiproliferative and cytotoxic studies on cancer (SH-SY5Y, MCF-7, MDA) and normal (MCF-10A) human cell lines revealed that leaf extracts induced a selective dose and time-dependent biological effect. While showing slight activity against environmental bacterial strains, artichoke leaf extracts exhibited significant antifungal activity against the phytopathogenic fungus Alternaria alternata. Overall, the results highlight the potential of "Carciofo Ortano" cultivation by-products as a rich source of biomolecules with versatile applications in humans, animals, and the environment.

7.
Heliyon ; 10(7): e29065, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38576551

ABSTRACT

After harvesting, pathogens can infect fresh vegetables in different ways. Pathogenic bacteria associated with fresh vegetables can cause widespread epidemics associated with foodborne illness. The aim of this study was to assess the microbiological quality of carrot slices after treatment with aqueous extracts of Lobularia maritima (AELm) at different concentrations AELm1 (10 mg/mL), AELm2 (5 mg/mL), AELm3 (2.5 mg/mL) and AELm4 (1.25 mg/mL), and Salmonella enterica subsp. enterica serovar Enteritidis, along with vacuum packaging and storage of carrots for 7 days at 4 °C. On days 1. and 7., total viable counts (TVC), and coliforms bacteria (CB), and Salmonella count were all analysed. Microorganisms that were obtained from carrots were identified using MALDI-TOF MS Biotyper Mass Spectrometry. The total viable, coliform bacteria and Salmonella counts were varied by the group of treatment. Higher counts were found in the control group on both days. The most isolated species of bacteria were Salmonella enterica and Pantoea agglomerans on the 1. day and Klebsiella oxytoca on the 7. day. The current study adds useful information for a better understanding of how Salmonella enterica reacts to the effect of AELm and its potential use as a sustainable washing method to eliminate bacteria from freshly cut carrots.

8.
Chem Biodivers ; 21(5): e202400228, 2024 May.
Article in English | MEDLINE | ID: mdl-38613448

ABSTRACT

Marrubium vulgare L. (Lamiaceae) has a long history of use in traditional herbal medicine for the treatment of respiratory tract infections, inflammatory conditions, and pain. This study aimed to investigate the chemical composition, acute toxicity, and antinociceptive effects of the aqueous extract from M. vulgare leaves (AEMV). Antioxidant activity was evaluated using DPPH and reducing power assays. The chemical composition of AEMV was determined through LC-MS/MS, and the levels of total phenolics, flavonoids, and condensed tannins were quantified. Acute oral toxicity was assessed in male Swiss mice with a single oral dose of AEMV (1, 2, 5 g/kg). The analgesic impact was examined through writhing, hot plate, and formalin tests. Our findings not only confirmed the safety of the extract in animal models but also revealed significant antioxidant activity in AEMV. High-performance liquid chromatography (HPLC) analysis identified important bioactive compounds, with marrubiin being a major component. Furthermore, AEMV demonstrated robust antinociceptive properties in all conducted tests, highlighting its potential as a valuable natural source of bioactive compounds suitable for a wide range of therapeutic applications.


Subject(s)
Analgesics , Antioxidants , Marrubium , Plant Extracts , Animals , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/isolation & purification , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Male , Marrubium/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Leaves/chemistry , Pain/drug therapy , Pain/chemically induced , Biphenyl Compounds/antagonists & inhibitors , Water/chemistry , Chromatography, High Pressure Liquid , Picrates/antagonists & inhibitors , Dose-Response Relationship, Drug
9.
Pharmaceutics ; 16(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38543225

ABSTRACT

In this work, phytochemical analysis on different extracts of Roccella tinctoria DC. was reported using different techniques with respect to the past. Twenty volatile and three non-volatile compounds were identified, some of which were found in this species for the first time. The methanolic extracts and their non-volatile components were then evaluated for their antitumor effects in cancerous A549 and Mz-ChA-1 cells and for their tolerability in non-cancerous BEAS-2B and H69 cells, showing IC50 values from 94.6 µg/mL to 416.4 µg/mL, in general. The same extracts and compounds were also tested for their antifungal effects in Candida albicans, with only compound 2 being active, with an MIC50 value of 87 µg/mL. In addition, they were tested for their anti-Candida adhesion activity, anti-Candida biofilm formation, and anti-Candida mature biofilm inhibition, with efficacy percentages generally above 50% but not for all of them. Lastly, the DF3 extract and compounds 1-2 were tested in vivo according to the Galleria mellonella survival assay, showing positive mortality rates above 50% at different concentrations. All these biological assays were conducted on this species for the first time. Comparisons with other lichens and compounds were also presented and discussed.

10.
Food Chem ; 448: 139101, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38537552

ABSTRACT

Green technologies based on microwaves have been developed by the food industry to produce organoleptically acceptable fruit juices without preliminary processing. Microwave irradiation coupled with hydrodiffusion and gravity (MHG) combines microwave heating with the earth's gravity, allowing the collection of hydrophilic substances released from the irradiated matrix. To the best of our knowledge, MHG extraction has never been experimented to produce pomegranate juice. In this work, we have evaluated it as a potential alternative to the conventional squeezing. A central composite design study (CCD) allowed the selection of the best extractive conditions (irradiation power and extraction time) to obtain a pomegranate juice with higher yield, polyphenol (e.g., catechin and delphinidin-3,5-glucoside) content, and related bioactivities (antioxidant and antidiabetic) than the one obtained by squeezing while maintaining the chemical-physical properties. Thus, this technique appears to be a functional alternative to producing high value pomegranate juice.

11.
Nat Prod Res ; : 1-10, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520257

ABSTRACT

The aim of this study is to investigate the antinociceptive, anti-inflammatory and antipyretic effects of quercetin. Additionally, molecular docking studies were conducted to evaluate potential interactions between quercetin and various molecular targets. Animal models were used to conduct a comprehensive pharmacological investigation of quercetin. Evaluation of analgesic activity revealed a reduction in the number of abdominal cramps during the twisting test and inhibition of pain during the second phase of the formaldehyde test. Additionally, evaluation of its anti-inflammatory activity showed a reduction in ear oedema. However, it is important to note that quercetin administration has not been shown to significantly reduce yeast-induced hyperthermia. The docking study revealed the high inhibitory potential of quercetin against the COX-2 receptor.

12.
Plants (Basel) ; 13(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38498554

ABSTRACT

New goals for industry and science have led to increased awareness of food safety and healthier living in the modern era. Here, one of the challenges in food quality assurance is the presence of pathogenic microorganisms. As planktonic cells can form biofilms and go into a sessile state, microorganisms are now more resistant to broad-spectrum antibiotics. Due to their proven antibacterial properties, essential oils represent a potential option to prevent food spoilage in the search for effective natural preservatives. In this study, the chemical profile of Citrus limon essential oil (CLEO) was evaluated. GC-MS analysis revealed that limonene (60.7%), ß-pinene (12.6%), and γ-terpinene (10.3%) are common constituents of CLEO, which prompted further research on antibacterial and antibiofilm properties. Minimum inhibitory concentration (MIC) values showed that CLEO generally exhibits acceptable antibacterial properties. In addition, in situ antimicrobial research revealed that vapour-phase CLEO can arrest the growth of Candida and Y. enterocolitica species on specific food models, indicating the potential of CLEO as a preservative. The antibiofilm properties of CLEO were evaluated by MIC assays, crystal violet assays, and MALDI-TOF MS analysis against S. enterica biofilm. The results of the MIC and crystal violet assays showed that CLEO has strong antibiofilm activity. In addition, the data obtained by MALDI-TOF MS investigation showed that CLEO altered the protein profiles of the bacteria studied on glass and stainless-steel surfaces. Our study also found a positive antimicrobial effect of CLEO against S. enterica. The anti-Salmonella activity of CLEO in vacuum-packed sous vide carrot samples was slightly stronger than in controls. These results highlight the advantages of the antibacterial and antibiofilm properties of CLEO, suggesting potential applications in food preservation.

13.
Foods ; 13(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38254501

ABSTRACT

Food is generally prepared and vacuum-sealed in a water bath, then heated to a precise temperature and circulated in a sous vide machine. Due to its affordability and ease of use, this cooking method is becoming increasingly popular in homes and food service businesses. However, suggestions from manufacturers and chefs for long-term, low-temperature sous vide cooking raise questions about food safety in the media. In this study, heat treatment with different times and wild thyme essential oil (EO) in sous vide-processed rabbit longissimus dorsi muscle were found to inactivate Salmonella enterica. The rabbit meat samples were vacuum-packed in control groups, in the second group the rabbit meat samples were injected with S. enterica, and in the third group were meat samples infected with S. enterica with Thymus serpylum EO additive. The vacuum-packed samples were cooked sous vide for the prescribed time at 55, 60, and 65 °C. At 5, 15, 30, and 60 min, the quantities of S. enterica, total bacterial counts, and coliform bacteria were measured in groups of sous vide rabbit meat. Microbiological analyses of rabbit meat samples on days 1 and 7 were evaluated. In this study, total viable counts, coliforms bacteria, and number of Salmonella spp. were identified. After incubation, isolates from different groups of microorganisms were identified by the mass spectrometry technique. For each day measured, the test group exposed to a temperature of 55 °C for 5 min had a greater number of total microbiota. The most isolated microorganisms by MALDI-TOF MS Biotyper from the control and treated groups were Lactococcus garvieae and in the treated groups also S. enterica. Based on our analysis of sous vide rabbit meat samples, we discovered that adding 1% of thyme essential oil to the mixture reduced the amount of Salmonella cells and increased the overall and coliform bacterial counts. The microbiological quality of sous vide rabbit meat that was kept for seven days was positively impacted by the addition of thyme essential oil.

14.
Food Sci Nutr ; 12(1): 574-589, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38268912

ABSTRACT

α-Pinene, α-terpineol, and 1,8-cineole are compounds naturally present in essential oils, although their amounts vary from oil to oil. Although several studies have reported their antibacterial and antioxidant effects, there are few reports on the synergistic or antagonistic effects of their combinations. The objective of this study was to investigate the combined antibacterial effect of these three compounds. To our knowledge, this is the first report on the prediction of their optimal combination using the mixture design approach. The experimental antibacterial activity of the α-pinene, α-terpineol, and 1,8-cineole mixtures depended on the proportion of each compound in the mixture and the target strain, with minimum inhibitory concentrations (MIC) ranging from 0.31 to 1.85 mg/mL. Using the increased simplex-centroid mixture design, the mixture containing 0.33% of each molecule proved to be the most effective against Bacillus cereus and had the lowest MIC values. In addition, α-pinene, α-terpineol, and 1,8-cineole showed significant antioxidant activity against 2,2-picryl-1-hydrazyl radical (DPPH), with IC50 values of 24.53 ± 0.05, 65.63 ± 0.71, and 63.58 ± 0.01 µg/mL, respectively. Statistical planning and the development of utility profiles of the substance mixtures can predict the optimal composition that will exhibit the highest antibacterial activity against B. cereus as well as antioxidant properties. Furthermore, the synergistic effect of the mixtures can contribute significantly to their successful use as natural preservatives in various applications.

15.
Pharmaceutics ; 16(1)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38258118

ABSTRACT

In this work, Lavandula x intermedia essential oil (LEO) was encapsulated in lipid-based nanoemulsions (NanoLEO) using the solvent-displacement technique. In order to preserve the colloidal stability of the formulation, LEO was appropriately doped with the incorporation of different levels of a water-insoluble oil used as a ripening inhibitor. All the nanoemulsion samples were evaluated in terms of the impact of the water-insoluble oil on the nanoemulsion formation, physical-chemical properties, and antibacterial effectiveness against E. coli (Gram-negative) and B. cereus (Gram-positive). The presence of the inert oil added benefits to the formulations in terms of appearance, colloidal stability, and loss of volatile components. However, the antimicrobial activity of the nanoemulsions dramatically decreased with the ripening inhibitor addition, probably because it hampered the internalization of the antimicrobial components of LEO within the bacterial cell membranes, thus nullifying the delivery ability of the nanoemulsion formulation. On the contrary, the undoped NanoLEO formulation showed unaltered antibacterial activity in both E. coli and B. cereus up to 40 weeks from the preparation.

16.
Plants (Basel) ; 12(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068556

ABSTRACT

With the growing issues of food spoilage, microbial resistance, and high mortality caused by cancer, the aim of this study was to evaluate T. zygis essential oil (TZEO) as a potential solution for these challenges. Here, we first performed GC/MS analysis which showed that the tested TZEO belongs to the linalool chemotype since the abundance of linalool was found to be 38.0%. Antioxidant activity assays showed the superiority of TZEO in neutralizing the ABTS radical cation compared to the DPPH radical. The TZEO was able to neutralize 50% of ABTS•+ at the concentration of 53.03 ± 1.34 µg/mL. Antimicrobial assessment performed by employing disc diffusion and minimal inhibitory concentration assays revealed TZEO as a potent antimicrobial agent with the highest inhibition activity towards tested gram-negative strains. The most sensitive on the treatment with TZEO was Enterobacter aerogenes showing an MIC 50 value of 0.147 ± 0.006 mg/mL and a MIC 90 value of 0.158 ± 0.024 mg/mL. Additionally, an in situ analysis showed great effects of TZEO in inhibiting gram-negative E. coli, P. putida, and E. aerogenes growing on bananas and cucumbers. Treatment with the TZEO vapor phase in the concentration of 500 µg/mL was able to reduce the growth of these bacteria on the food models to the extent > 90%, except for E. coli growth on the cucumber, which was reduced to the extent of 83.87 ± 4.76%. Furthermore, a test on the antibiofilm activity of the tested essential oil revealed its biofilm prevention effects against Salmonella enterica which forms biofilms on plastic and stainless-steel surfaces. Performed tests on the TZEO effects towards cell viability showed no effects on the normal MRC-5 cell line. However, the results of MTT assay of TZEO effects on three cancer cell lines (MDA-MB-231, HCT-116, and K562) suggest that TZEO exerted the strongest effects on the inhibition of the viability of MDA-MB-231 cells, especially after long-term treatment in the highest concentration applied with reducing the viability of the cells to 57%. Additionally, results of NBT and Griess assays suggest that TZEO could be a convenient candidate for future testing for developing novel antitumor therapies.

17.
Article in English | MEDLINE | ID: mdl-38000094

ABSTRACT

Malaria, an infectious disease with a tremendous impact on human health is caused by Plasmodium parasites, and transmitted by Anopheles mosquitoes. New approaches to control the disease involve transmission blocking strategies aiming to target the parasite in the mosquito. Here, we investigated the putative inhibitory activity of essential oils and their components on the early mosquito stages of the parasite. We employed an in vitro assay of gametocyte-to-ookinete development of the rodent model parasite Plasmodium berghei combined with high content screening. 60 essential oils with known composition were tested. The results revealed that fifteen EOs had inhibitory activity. Furthermore, a machine learning approach was used to identify the putative inhibitory components. Five of the most important chemical components indicated by the machine learning-based models were actually confirmed by the experimental approach. This combined approach was used for the first time to identify the potential transmission blocking activity of essential oils and single components at the zygote and ookinete stages.


Subject(s)
Anopheles , Malaria , Parasites , Animals , Humans , Malaria/parasitology , Plasmodium berghei , Anopheles/parasitology
18.
Plants (Basel) ; 12(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37836125

ABSTRACT

In this study, Salvia officinalis L. and Salvia sclarea essential oils (EOs) were investigated using gas chromatography-mass spectrometry (GC-MS) to describe their chemical composition. The obtained results show, for both EOs, a profile rich in terpene metabolites, with monoterpenes predominating sesquiterpenes but with significant qualitative and quantitative differences. The main compound found in the Salvia officinalis EO (SOEO) was camphor (19.0%), while in Salvia sclarea EO (SCEO), it was linalyl acetate (59.3%). Subsequently, the in vitro antimicrobial activity of the EOs against eight pathogenic strains was evaluated. The disc diffusion method showed a significant lysis zone against Gram-positive bacteria. The minimum inhibitory concentrations (MICs) ranged from 3.7 mg/mL to 11.2 mg/mL, indicating that each EO has specific antimicrobial activity. Both EOs also showed significant antiradical activity against DPPH radicals and total antioxidant activity. In addition, the preservative effect of SOEO (9.2%) and SCEO (9.2%), alone or in combination, was tested in ground beef, and the inhibitory effect against Listeria monocytogenes inoculated into the raw ground beef during cold storage was evaluated. Although the effect of each individual EO improved the biochemical, microbiological, and sensory parameters of the samples, their combination was more effective and showed complete inhibition of L. monocytogenes after 7 days of storage at 4 °C. The results show that both EOs could be used as safe and natural preservatives in various food and/or pharmaceutical products.

19.
Plants (Basel) ; 12(10)2023 May 21.
Article in English | MEDLINE | ID: mdl-37653962

ABSTRACT

Gibberellic acid-stimulated Arabidopsis (GASA) gene family is a class of functional cysteine-rich proteins characterized by an N-terminal signal peptide and a C-terminal-conserved GASA domain with 12 invariant cysteine (Cys) residues. GASA proteins are widely distributed among plant species, and the majority of them are involved in the signal transmission of plant hormones, the regulation of plant development and growth, and the responses to different environmental constraints. To date, their action mechanisms are not completely elucidated. This review reports an overview of the diversity, structure, and subcellular localization of GASA proteins, their involvement in hormone crosstalk and redox regulation during development, and plant responses to abiotic and biotic stresses. Knowledge of this complex regulation can be a contribution to promoting multiple abiotic stress tolerance with potential agricultural applications through the engineering of genes encoding GASA proteins and the production of transgenic plants.

20.
Nat Prod Res ; : 1-6, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37732610

ABSTRACT

This study investigated the bioactivity of both aerial (GNAR) and underground (GNUG) parts of Gymnadenia nigra Rchb.f. (syn. Nigritella nigra (L.) Rchb. f.) (Orchidaceae). The obtained data proved interesting when the samples were tested in two adrenocortical cancer cell lines (SW13 and H295R). In particular, the GNAR 80% methanol extract distinctly inhibited their viability after 24 h at a concentration of 1 µg/µL by MTT assay and trypan blue dye exclusion method. Cell morphology evaluation by means Wright's staining also showed significant results, particularly in SW13 cells under the effect of both extracts. GNAR extract was able to scavenge the DPPH radical better than GNUG extract. It also was more active in albumin denaturation (a maximum % denaturation equal to 463.0 ± 8.3 vs 77.3 ± 13.3) and protease inhibition (a maximum % inhibition equal to 138.5 ± 7.0 vs 2.1 ± 2.0) tests. The results highlighted an important antitumor activity of G. nigra in vitro that deserves to be further studied.

SELECTION OF CITATIONS
SEARCH DETAIL
...