ABSTRACT
Chronic hepatitis B virus (HBV) infection affects 257-291 million people worldwide. The World Health Organization reported 890,000 HBV-related deaths in 2019, higher than reported previously. There are 10 HBV genotypes (A-J) subdivided into several subgenotypes that differ considerably by geography. Various virologic factors, including genotype and subgenotype, impact the odds of acquiring a chronic HBV infection, the type of treatment prescribed, and the risk of developing hepatocarcinoma. Information on the HBV genotypes and subgenotypes that circulate in Ecuador remains low. To address this gap, the current study took a preliminary look at HBV-infected human samples from this region to identify the most common genotypes and subgenotypes. Samples from 44 patients in the Andean, Coastal, and Amazon regions of Ecuador were amplified and two major genotypes were identified, genotype F (42/44; 95.5%) and genotype E (2 patients; 4.5%). The genotype F subgenotypes were F3 (35/42; 83.33%), F4 (6/42; 14.28%), and F1b (1/42, 2.39%). This is the first epidemiological study to assess the distribution of HBV genotypes in Ecuador. The findings can inform antiviral drug effectivity studies specific to HBV genotypes prevalent in South America.
ABSTRACT
Background: Echinococcosis is a uncommon condition in pediatric patients, and encompasses alveolar and cystic forms, predominantly affecting the lungs and liver. Transmission occurs primarily through zoonotic means, such as the contamination of water and food by infected dog and other canid feces. Diagnosis can be challenging due to nonspecific symptoms that often mimic pneumonia. The case: A 6-year-old female patient from a rural area in Ecuador who initially presented with nonspecific symptoms indicative of pneumonia. However, further investigation into socio-environmental factors led to a diagnosis of pulmonary and hepatic hydatid disease. Conclusion: The timely and accurate diagnosis of this infectious disease enabled the patient to receive appropriate treatment and surgical intervention, leading to her complete recovery.
ABSTRACT
Introduction: The hepatitis C virus (HCV) is responsible for 1.5 million new infections, and around 290 thousand deaths worldwide. 15 to 30% of the patients that go into a chronic phase of the disease will develop cirrhosis or hepatocellular carcinoma within 20 years and is the leading etiology for liver transplantation. HCV genetic characteristics display a remarkable genetic diversity, which divides HCV into 8 genotypes and 67 subgenotypes; the treatment and probability of chronic HCV depend on these genotypes and subgenotypes. In Ecuador, there is no available information regarding HCV genotypes and subgenotypes; therefore, this study aims to provide an overview of the main genotypes circulating in Ecuador. Methods: In a cross-sectional and descriptive study using the Ecuadorian Ministry of Health (MSP) registry of patients already diagnosed with Hepatitis C (HCV) between 2017 and 2019. From 51 patients identified by health ministry, blood samples from a total of 15 subjects (named HCV1 to HCV15) were collected using an appropriate venipuncture technique. Pandemic-related circumstances avoid reaching all patients identified by health ministry. Results: After the amplification of 11 samples from patients living in the Ecuadorian territory, the genotypes of HCV obtained were distributed as follows: 6 samples corresponding to subgenotype 2b (54.5%), 2 samples corresponding to subgenotype 1a (18.2%), 2 samples corresponding to subgenotype 4d (18.2%) and 1 corresponding to sample 1b (9.1%). Conclusion: These results represent the first epidemiological approach to genotype distribution in Ecuador, and it contributes to better management of patients. We emphasize the importance of the development of better strategies from the Healthcare Ministry of Ecuador (MSP) for the identification, treatment and tracking of HCV patients.
ABSTRACT
Background: Carbapenem-resistant Klebsiella pneumoniae, particularly isolates classified as sequence-type 258 (ST258), are multidrug-resistant strains that are strongly associated with poor-prognosis nosocomial infections, as current therapeutic options are limited and ineffective. In recent years, phage therapy has emerged as a promising treatment option for these scenarios. Methodology and Results: We report the isolation and characterization of three new phages against Klebsiella pneumoniae ST258 strains recovered from Machángara river wastewater. These new members of the Ackermannviridae family showed stability over a wide temperature and pH range and burst sizes ranging from 6 to 44 plaque-forming units per bacteria. Their genomes were about 157 kilobases, with an average guanine-cytosine content of 46.4% and showed presence of several transfer RNAs, which also allowed us to predict in silico a lytic replicative cycle due to the presence of endolysins and lysozymes. Conclusion: Three lytic phages of Ackermannviridae family were recovered against Klebsiella pneumoniae ST258 strains from sewage; however, further characterization is needed for future consideration as therapeutic alternatives.
ABSTRACT
The research interest of the scientific community in biofilm-forming microorganisms is growing due to the problems caused by their infections affecting humans and animals, mainly because of the difficulty of the host immune system in eradicating these microbial complex communities and the increasing antimicrobial resistance rates worldwide. This review describes the virulence factors and their interaction with the microbial communities of four well-known and highly biofilm-forming pathogens, more exactly, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus spp., and Candida spp. The innate and adaptive immune responses caused by the infection with these microorganisms and their evasion to the host immune system by biofilm formation are discussed in the present work. The relevance of the differences in the expression of certain virulence factors and the immune response in biofilm-associated infections when compared to planktonic infections is usually described as the biofilm architecture protects the pathogen and alters the host immune responses, here we extensively discussed these mechanisms.
ABSTRACT
The high prevalence of nosocomial infections is related to the use of medical insertion devices such as central venous catheters (CVCs). Most of the microorganisms causing nosocomial infections are biofilm producers, this characteristic allows them to adhere to abiotic surfaces and cause initial catheter infections that can lead to bloodstream infections. Our main goal in this systematic review was to evaluate the prevalence of biofilm among CVC-related infections, particularly among Intensive Care Unit (ICU) patients, in the studies applying different in vitro and in vivo methodologies. All studies reporting clinical isolates from patients with catheter-related nosocomial infections and biofilm evaluation published up to 24 June 2022 in the PubMed and Scopus databases were included. Twenty-five studies met the eligibility criteria and were included in this systematic review for analysis. Different methodologies were applied in the assessment of biofilm-forming microorganisms including in vitro assays, catheter-infected in vitro, and in vivo mouse models. The present study showed that between 59 and 100% of clinical isolates were able to form biofilms, and the prevalence rate of biofilm formation varied significantly between studies from different countries and regions. Among the clinical isolates collected in our study set, a wide variety of microorganisms including Gram-positive strains, Gram-negative strains, and Candida albicans were found. Many authors studied resistance mechanisms and genes related to biofilm development and surface adherence properties. In some cases, the studies also evaluated biofilm inhibition assays using various kinds of catheter coatings.
ABSTRACT
The World Health Organization (WHO) declared coronavirus disease-2019 (COVID-19) a global pandemic on 11 March 2020. In Ecuador, the first case of COVID-19 was recorded on 29 February 2020. Despite efforts to control its spread, SARS-CoV-2 overran the Ecuadorian public health system, which became one of the most affected in Latin America on 24 April 2020. The Hospital General del Sur de Quito (HGSQ) had to transition from a general to a specific COVID-19 health center in a short period of time to fulfill the health demand from patients with respiratory afflictions. Here, we summarized the implementations applied in the HGSQ to become a COVID-19 exclusive hospital, including the rearrangement of hospital rooms and a triage strategy based on a severity score calculated through an artificial intelligence (AI)-assisted chest computed tomography (CT). Moreover, we present clinical, epidemiological, and laboratory data from 75 laboratory tested COVID-19 patients, which represent the first outbreak of Quito city. The majority of patients were male with a median age of 50 years. We found differences in laboratory parameters between intensive care unit (ICU) and non-ICU cases considering C-reactive protein, lactate dehydrogenase, and lymphocytes. Sensitivity and specificity of the AI-assisted chest CT were 21.4% and 66.7%, respectively, when considering a score >70%; regardless, this system became a cornerstone of hospital triage due to the lack of RT-PCR testing and timely results. If health workers act as vectors of SARS-CoV-2 at their domiciles, they can seed outbreaks that might put 1,879,047 people at risk of infection within 15 km around the hospital. Despite our limited sample size, the information presented can be used as a local example that might aid future responses in low and middle-income countries facing respiratory transmitted epidemics.
Subject(s)
COVID-19/diagnostic imaging , COVID-19/epidemiology , Hospitals, Special/organization & administration , Hospitals, Special/trends , Pandemics/prevention & control , SARS-CoV-2/genetics , Triage/methods , Adult , Aged , Artificial Intelligence , COVID-19/prevention & control , COVID-19/virology , COVID-19 Nucleic Acid Testing , Ecuador/epidemiology , Female , Humans , Intensive Care Units , Male , Mass Chest X-Ray/methods , Middle Aged , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Risk Factors , Tomography, X-Ray Computed/methodsABSTRACT
The Bacillus Calmette-Guérin (BCG) is a well-known vaccine with almost a century of use, with the apparent capability to improve cytokine production and epigenetics changes that could develop a better response to pathogens. It has been postulated that BCG protection against SARS-CoV-2 has a potential role in the pandemic, through the presence of homologous amino acid sequences. To identify a possible link between BCG vaccination coverage and COVID-19 cases, we used official epidemic data and Ecuadorian Ministry of Health and Pan American Health Organization vaccination information. BCG information before 1979 was available only at a national level. Therefore, projections based on the last 20 years were performed, to compare by specific geographic units. We used a Mann-Kendall test to identify BCG coverage variations, and mapping was conducted with a free geographic information system (QGIS). Nine provinces where BCG vaccine coverage was lower than 74.25% show a significant statistical association (χ2 Pearson's = 4.800, df = 1, p = 0.028), with a higher prevalence of cases for people aged 50 to 64 years than in younger people aged 20 to 49 years. Despite the availability of BCG vaccination data and the mathematical models needed to compare these data with COVID-19 cases, our results show that, in geographic areas where BCG coverage was low, 50% presented a high prevalence of COVID-19 cases that were young; thus, low-coverage years were more affected.
ABSTRACT
Tuberculosis (TB) is a significant public health problem in Ecuador with an incidence of 43 per 100,000 inhabitants and an estimated multidrug-resistant-TB prevalence in all TB cases of 9%. Genotyping of Mycobacterium tuberculosis (MTBC) is important to understand regional transmission dynamics. This study aims to describe the main MTBC lineages and sublineages circulating in the country. A representative sample of 373 MTBC strains from 22 provinces of Ecuador, with data comprising geographic origin and drug susceptibility, were genotyped using 24 loci-MIRU-VNTR. For strains with an ambiguous sublineage designation, the lineage was confirmed by Regions of Difference analysis or by Whole Genome Sequencing. We show that lineage 4 is predominant in Ecuador (98.3% of the strains). Only 4 strains belong to lineages 2-sublineage Beijing and two strains to lineage 3-sublineage Delhi. Lineage 4 strains included sublineages LAM (45.7%), Haarlem (31.8%), S (13.1%), X (4.6%), Ghana (0.6%) and NEW (0.3%). The LAM sublineage showed the strongest association with antibiotic resistance. The X and S sublineages were found predominantly in the Coastal and the Andean regions respectively and the reason for the high prevalence of these strains in Ecuador should be addressed in future studies. Our database constitutes a tool for MIRU-VNTR pattern comparison of M. tuberculosis isolates for national and international epidemiologic studies and phylogenetic purposes.
Subject(s)
Antitubercular Agents/pharmacology , Drug Resistance, Microbial/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis/epidemiology , Antitubercular Agents/therapeutic use , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Ecuador/epidemiology , Genetic Variation , Humans , Minisatellite Repeats/genetics , Molecular Epidemiology , Multilocus Sequence Typing , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Phylogeny , Tuberculosis/drug therapy , Tuberculosis/microbiology , Whole Genome SequencingABSTRACT
Background: Strains of the Beijing sublineage of Mycobacterium tuberculosis have caused large outbreaks of tuberculosis, often involving multidrug resistance strains and this genetically highly conserved family of strains predominates in some geographic areas. For most of the countries of Latin America, no country-wide studies about the prevalence of the Beijing lineage are available. Methods: In this study, we determine the prevalence of the Beijing sublineage in Ecuador, using a large nation-wide sample of 991 isolates from the years 2014-2016 and with the strains, in case-related-proportional representation, emerging from most of the provinces of the country. The isolates were genotyped with asinglenucleotidespecific polymorphism (SNP) polymerase chain reaction for the Beijing sublineage. SNPpositive strains were confirmed as belonging to this lineage with 24 mycobacterial interspersed repetitive unitvariable number of tandem repeat and DNA sequencing. Results: We identified only four Beijing isolates in this collection of 991 strains and calculated a prevalence rate of 0.43%. Conclusions: Our study shows a limited dissemination of the Beijing strains in the Ecuadorian population. This in contrast with the neighbor countries of Peru and Colombia were locally a prevalence of up to 16% has been reported.
Subject(s)
Mass Screening/statistics & numerical data , Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide , Tuberculosis/epidemiology , Tuberculosis/microbiology , DNA, Bacterial/isolation & purification , Drug Resistance, Bacterial , Ecuador/epidemiology , Genotype , Humans , Minisatellite Repeats , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects , Polymerase Chain Reaction , Prevalence , Sequence Analysis, DNAABSTRACT
The Beijing family, the most successful Mycobacterium tuberculosis lineage, is considered hypervirulent, associated with clustering and has a strong association with multidrug-resistant tuberculosis. The Beijing strains have spread worldwide and also to Latin America. Genotyping of a countrywide collection of 380 M. tuberculosis strains from Ecuador, with 24-loci mycobacterial interspersed repetitive units-variable number tandem repeats (MIRU-VNTR), revealed only six Beijing strains, but four of these were MDR-TB. There was no clustering as all six strains had very distinct MIRU-VNTR profiles that have not been reported in the rest of Latin America. Although active transmission for Beijing has been described for the neighboring countries Peru and Colombia, there is no evidence that Beijing strains in Ecuador are more frequently transmitted than other strains. Moreover, the low prevalence (1.6%) of the Beijing sublineage in Ecuador challenges the concept of hyperadaptability and transmissibility of the Beijing strains in our country.
Subject(s)
Genetic Variation/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Anti-Bacterial Agents/therapeutic use , Beijing , Colombia , DNA, Bacterial/genetics , Ecuador/epidemiology , Genotype , Humans , Minisatellite Repeats/genetics , Mycobacterium tuberculosis/drug effects , Peru , Prevalence , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiologyABSTRACT
The aim of this study was to characterize the most frequent mutations associated with rifampicin (RIF) and isoniazid (INH) resistance of Mycobacterium tuberculosis isolates from Ecuador. Sequence analysis of 40 strains, resistant for the tuberculosis drugs INH, RIF, or for both showed that of the 31 strains with resistance to INH, 20 strains (64.5%) carried a mutation in the katG gene (codon 315). Eight INH-resistant strains carried a mutation in the katG gene at codon 463. This katG463 mutation, considered a phylogenetic marker, was exclusively found in INH-resistant strains and not in 121 INH-susceptible strains. Of the 35 strains resistant to RIF, 33 (93.9%) had mutations in the hot spot region of the rpoB gene, predominantly in codons 531, 516, and 526. Our results show that sequence-based detection for drug resistance of the katG will identify, respectively, 64.5% or, considering katG463 as a marker, 90.3% of the INH-resistant strains. Sequencing of the hot spot region of the rpoB gene will detect 94.3% of the RIF drug-resistant isolates in Ecuador. This is appropriate for fast screening for drug resistance with the GeneXpert MTB/RIF assay or by direct sequencing of a part of the genes katG and rpoB of PCR products obtained from DNA isolation from primary cultures.
Subject(s)
Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Mutation/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/genetics , Antitubercular Agents/pharmacology , Codon/genetics , DNA, Bacterial/genetics , Ecuador , Humans , Microbial Sensitivity Tests/methods , Mutation Rate , Mycobacterium tuberculosis/drug effects , Phylogeny , Tuberculosis, Multidrug-Resistant/drug therapyABSTRACT
Tropical Ecuador presents a unique climate in which we study the relationship between the ambient levels of solar ultraviolet radiation and eye disease in the absence of a latitudinal gradient. The national distribution of surface ultraviolet, taking into account MODIS and OMI satellite observation of aerosol, ozone, surface albedo, local elevation and cloud fractions measured during 2011, was compared with the national pterygium (WHO ICD H11) and senile cataract (WHO ICD H25) incidence projected from the 2010 National Institute of Statistics and Census (Ecuador). Public Health Ministry projections for age categories 0 to 39, 40 to 59 and 60+ years were compared to surface ultraviolet irradiance data in 1040 parishes. Correlations drawn between modelled surface ultraviolet and eye disease incidence show a significant increase in both pterygium and senile cataract in the highest ambient exposure regions of the Pacific coast and western lowlands with incidence rates of 34.39 and 16.17 per 100 000 residents respectively. The lowest rates of incidence for pterygium (6.89 per 100 000) and senile cataract (2.90 per 100 000) were determined in high altitude sites and are attributed here to increased daily cloud fraction for parishes located in the Andean mountain range. The South American Andes experience the highest solar UV exposures on Earth and report frequent high incidence of keratinocyte cancer. Our results show the high Andes to be the location of the lowest eye disease incidence suggesting that both pterygium and senile cataract are the result of cumulative exposure to solar ultraviolet. These findings have clear implications for the agricultural workers and fishermen of the lowland districts of Ecuador, contrary to conventional understanding that greater risks are faced in locations of high altitude.