Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Psychiatr Res ; 158: 49-55, 2023 02.
Article in English | MEDLINE | ID: mdl-36571911

ABSTRACT

Recent evidence indicates that DDR1 participates in myelination and that variants of DDR1 are associated with decreased cognitive processing speed (PS) in schizophrenia (SZ). Here, we explored whether DDR1 variants were associated with PS in subjects diagnosed with an early psychosis (EP), a condition often preceding SZ. Data from two Spanish independent samples (from Reus and Santander) including patients with EP (n = 75 and n = 312, respectively) and healthy controls (HCs; n = 57 and n = 160) were analyzed. The Trail Making Test part A was used to evaluate PS. Participants underwent genotyping to identify DDR1 variants rs1264323 and rs2267641. Cross-sectional data were analyzed with general linear models and longitudinal data were analyzed using mixed models. We examined the combined rs1264323AA-rs2267641AC/CC genotypes (an SZ-risk combination) on PS. The SZ-risk combined genotypes were associated with increased PS in EP patients but not in HCs in the cross-sectional analysis. In the longitudinal analysis, the SZ-risk combined genotypes were significantly associated with increased PS in both HCs and EP patients throughout the 10-year follow-up but no genotype × time interaction was observed. These results provide further evidence that DDR1 is involved in cognition and should be replicated with other samples.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Cross-Sectional Studies , Processing Speed , Psychotic Disorders/genetics , Schizophrenia/genetics , Schizophrenia/diagnosis , Cognition , Discoidin Domain Receptor 1/genetics
2.
Biochim Biophys Acta Mol Cell Res ; 1866(11): 118483, 2019 11.
Article in English | MEDLINE | ID: mdl-31108116

ABSTRACT

Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor that is activated by fibrillar collagens. Here, we review the expression and role of DDR1 in the central nervous system (CNS). In a murine model, DDR1 is expressed in oligodendrocytes in the developing brain and during remyelination. In human adult brain tissue, DDR1 is detected in a similar pattern as other classical myelin proteins such as myelin basic protein (MBP). Up to 50 transcripts of DDR1 have been detected in human tissues, of which 5 isoforms have been identified. In the human brain, all 5 isoforms are detectable, but DDR1b is the most highly expressed, and DDR1c is coexpressed with myelin genes. DDR1 sequence variants have been associated with psychiatric disorders, and upregulation of this gene occurs in gliomas. Moreover, mutations in DDR1 have been found in tumors of Schwann cells, which are the myelinating cells of the peripheral nervous system. All these data suggest that DDR1 plays a role in myelination and is relevant to neuropsychiatric diseases.


Subject(s)
Central Nervous System/metabolism , Discoidin Domain Receptor 1/metabolism , Oligodendroglia/metabolism , Animals , Astrocytes , Brain/metabolism , Discoidin Domain Receptor 1/chemistry , Endothelial Cells , Humans , Mice , Microglia , Myelin Basic Protein , Myelin Proteins/genetics , Neoplasms/metabolism , Protein Isoforms , RNA, Messenger/metabolism , Up-Regulation
3.
J Psychiatr Res ; 110: 74-82, 2019 03.
Article in English | MEDLINE | ID: mdl-30597424

ABSTRACT

DDR1 has been linked to schizophrenia (SZ) and myelination. Here, we tested whether DDR1 variants in people at risk for SZ influence white matter (WM) structural variations and cognitive processing speed (PS). First, following a case-control design (Study 1), SZ patients (N = 1193) and controls (N = 1839) were genotyped for rs1264323 and rs2267641 at DDR1, and the frequencies were compared. We replicated the association between DDR1 and SZ (rs1264323, adjusted P = 0.015). Carriers of the rs1264323AA combined with the rs2267641AC or CC genotype are at risk to develop SZ compared to the other genotype combinations. Second, SZ patients (Study 2, N = 194) underwent an evaluation of PS using the Trail Making Test (TMT) and DDR1 genotyping. To compare PS between DDR1 genotype groups, we conducted an analysis of covariance (including rs1264323 as a covariate) and found that SZ patients with the rs2267641CC genotype had decreased PS compared to patients with the AA and AC genotypes. Third, 54 patients (Study 3) from Study 2 were selected based on rs1264323 genotype to undergo reevaluation, including a DTI-MRI brain scan. To test for associations between PS, WM microstructure and DDR1 genotype, we first localized those WM regions where fractional anisotropy (FA) was correlated with PS and tested whether FA showed differences between the rs1264323 genotypes. SZ patients with the rs1264323AA genotype showed decreased FA in WM regions associated with decreased PS. We conclude that DDR1 variants may confer a risk of SZ through WM microstructural alterations leading to cognitive dysfunction.


Subject(s)
Cognitive Dysfunction/physiopathology , Discoidin Domain Receptor 1/genetics , Schizophrenia/genetics , Schizophrenia/pathology , Schizophrenia/physiopathology , White Matter/pathology , Adult , Case-Control Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Polymorphism, Single Nucleotide , Spain , White Matter/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...