Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35056813

ABSTRACT

The use of more eco-efficient cements in concretes is one of the keys to ensuring construction industry sustainability. Such eco-efficient binders often contain large but variable proportions of industrial waste or by-products in their composition, many of which may be naturally occurring radioactive materials (NORMs). This study explored the application of a new gamma spectrometric method for measuring radionuclide activity in hybrid alkali-activated cements from solid 5 cm cubic specimens rather than powder samples. The research involved assessing the effect of significant variables such as the nature of the alkaline activator, reaction time and curing conditions to relate the microstructures identified to the radiological behavior observed. The findings showed that varying the inputs generated pastes with similar reaction products (C-S-H, C-A-S-H and (N,C)-A-S-H) but different microstructures. The new gamma spectrometric method for measuring radioactivity in solid 5 cm cubic specimens in alkaline pastes was found to be valid. The variables involved in hybrid cement activation were shown to have no impact on specimen radioactive content. The powder samples, however, emanated 222Rn (a descendent of 226Ra), possibly due to the deformation taking place in fly ash structure during alkaline activation. Further research would be required to explain that finding.

2.
Materials (Basel) ; 14(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34640047

ABSTRACT

The study reported the effect of granite sand on strength and microstructural developments in mortars prepare from OPC with a high coal fly ash (FA) content or from hybrid alkaline cements. The radiological behaviour of the resulting mortars was compared to materials prepared with siliceous sand (with particles sizes of <2 mm) and the relationship between such radiological findings and mortar microstructure and strength was explored. A new method for determining natural radionuclides and their activity concentration Index (ACI) on cement mortars (specifically to solid 5-cm cubic specimens) was applied and validated. The microstructural changes associated in mortars have no effect on mortar radiological content measurements. The mortars with granite sand exhibited very high ACI > 0.96, which would ultimately limit their use. A conclusion of interest is that where information is at hand on the starting materials (OPC, FA, sand, admixtures), their proportions in the mortar and the mixing liquid content (water or alkaline activators) their radiological content is accurately predicted. The inference is that a mortar's radiological content and ACI can be known prior to mixing, providing a criterion for determining its viability. That in turn lowers environmental risks and the health hazards for people in contact with such materials.

3.
Materials (Basel) ; 14(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494137

ABSTRACT

Supplementary cementitious materials (SCMs) in industrial waste and by-products are routinely used to mitigate the adverse environmental effects of, and lower the energy consumption associated with, ordinary Portland cement (OPC) manufacture. Many such SCMs, such as type F coal fly ash (FA), are naturally occurring radioactive materials (NORMs). 226Ra, 232Th and 40K radionuclide activity concentration, information needed to determine what is known as the gamma-ray activity concentration index (ACI), is normally collected from ground cement samples. The present study aims to validate a new method for calculating the ACI from measurements made on unground 5 cm cubic specimens. Mechanical, mineralogical and radiological characterisation of 28-day OPC + FA pastes (bearing up to 30 wt % FA) were characterised to determine their mechanical, mineralogical and radiological properties. The activity concentrations found for 226Ra, 212Pb, 232Th and 40K in hardened, intact 5 cm cubic specimens were also statistically equal to the theoretically calculated values and to the same materials when ground to a powder. These findings consequently validated the new method. The possibility of determining the activity concentrations needed to establish the ACI for cement-based materials on unground samples introduces a new field of radiological research on actual cement, mortar and concrete materials.

4.
J Environ Radioact ; 168: 4-9, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27005011

ABSTRACT

This work describes the outcomes of the COST Action-TU1301 "NORM4Building" intercomparison on the determination of natural radioactivity in ceramics. Twenty-two laboratories involved in the intercomparison are evaluated for their performance using robust statistics. The reference values of 226Ra (214Bi and 214Pb) are determined to be 122 ± 11 Bq kg-1 and 124 ± 14 Bq kg-1, respectively and in secular equilibrium in the uranium chain while the reference values of 232Th (228Ac) is determined to be 61 ± 6 Bq kg-1 and that of 40K was determined to be 955 ± 40 Bq kg-1. Although the aim of the exercise was to determine the activity concentration of 226Ra, 232Th and 40K and evaluation of the "Activity Concentration Index", laboratories were asked to report complete characterization of natural radionuclides. The results of this exercise pointed out a good performance among laboratories since the percentage of the acceptable results were above 90% for the radionuclides of interest. Based on these results, considering the systematic rejection of the results reported from a few laboratories we emphasize the need for quality control procedures.


Subject(s)
Ceramics/analysis , Potassium Radioisotopes/analysis , Radiation Monitoring/methods , Radon/analysis , Thorium/analysis
5.
J Environ Radioact ; 102(5): 520-6, 2011 May.
Article in English | MEDLINE | ID: mdl-21093128

ABSTRACT

In several Naturally Occurring Radioactive Material (NORM) industries, relatively high temperatures are used as part of their industrial processes. In coal combustion, as occur in other high temperature processes, an increase of the activity concentration of every natural radioisotope is produced both, in residues and by-products. An additional increase can be observed in the activity concentration of radionuclides of elements with low boiling point. This work is centred in the increase of polonium, more precisely in its radioisotope Po-210, present in the natural chains, and with a half-life long enough to be considered for radiation protection purposes. This additional increase appears mainly in the residual particles that are suspended in the flue gases: the fly-ashes. Besides, scales, with a high concentration of this radioisotope, were observed. These scales are produced on surfaces with a temperature lower than the boiling point of the chemical element. Both, the accumulation in particles and the production of scales are attributed to condensation effects. When effective doses for the public and the workers are evaluated, taking into account these increases in activity concentrations, the use of theoretical models is necessary. In this work a theoretical description of those effects is presented. Moreover, a verification of the predictions of the model was performed by comparing them with measurements carried on in coal-fired power plants. The same description here presented is applicable in general to the behaviour of Po-210 in other NORM industries where high temperature processes involving raw materials are used, as can be ceramic, cement production, tiles production or steel processing.


Subject(s)
Models, Biological , Polonium/analysis , Power Plants , Radioactive Pollutants/analysis , Radioactive Waste/analysis , Carbon , Coal Ash , Hot Temperature , Particulate Matter
SELECTION OF CITATIONS
SEARCH DETAIL
...