Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Cell Mol Gastroenterol Hepatol ; 17(4): 639-656, 2024.
Article in English | MEDLINE | ID: mdl-38199279

ABSTRACT

BACKGROUND & AIMS: Chronic inflammatory illnesses are debilitating and recurrent conditions associated with significant comorbidities, including an increased risk of developing cancer. Extensive tissue remodeling is a hallmark of such illnesses, and is both a consequence and a mediator of disease progression. Despite previous characterization of epithelial and stromal remodeling during inflammatory bowel disease, a complete understanding of its impact on disease progression is lacking. METHODS: A comprehensive proteomic pipeline using data-independent acquisition was applied to decellularized colon samples from the Muc2 knockout (Muc2KO) mouse model of colitis for an in-depth characterization of extracellular matrix remodeling. Unique proteomic profiles of the matrisomal landscape were extracted from prepathologic and overt colitis. Integration of proteomics and transcriptomics data sets extracted from the same murine model produced network maps describing the orchestrating role of matrisomal proteins in tissue remodeling during the progression of colitis. RESULTS: The in-depth proteomic workflow used here allowed the addition of 34 proteins to the known colon matrisomal signature. Protein signatures of prepathologic and pathologic colitic states were extracted, differentiating the 2 states by expression of small leucine-rich proteoglycans. We outlined the role of this class and other matrisomal proteins in tissue remodeling during colitis, as well as the potential for coordinated regulation of cell types by matrisomal ligands. CONCLUSIONS: Our work highlights a central role for matrisomal proteins in tissue remodeling during colitis and defines orchestrating nodes that can be exploited in the selection of therapeutic targets.


Subject(s)
Colitis , Proteomics , Mice , Animals , Extracellular Matrix/metabolism , Colitis/pathology , Chronic Disease , Disease Progression
2.
Proc Natl Acad Sci U S A ; 120(42): e2303774120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37816052

ABSTRACT

Although robustly expressed in the disease-free (DF) breast stroma, CD36 is consistently absent from the stroma surrounding invasive breast cancers (IBCs). In this study, we primarily observed CD36 expression in adipocytes and intralobular capillaries within the DF breast. Larger vessels concentrated in interlobular regions lacked CD36 and were instead marked by the expression of CD31. When evaluated in perilesional capillaries surrounding ductal carcinoma in situ, a nonobligate IBC precursor, CD36 loss was more commonly observed in lesions associated with subsequent IBC. Peroxisome proliferator-activated receptor γ (PPARγ) governs the expression of CD36 and genes involved in differentiation, metabolism, angiogenesis, and inflammation. Coincident with CD36 loss, we observed a dramatic suppression of PPARγ and its target genes in capillary endothelial cells (ECs) and pericytes, which typically surround and support the stability of the capillary endothelium. Factors present in conditioned media from malignant cells repressed PPARγ and its target genes not only in cultured ECs and pericytes but also in adipocytes, which require PPARγ for proper differentiation. In addition, we identified a role for PPARγ in opposing the transition of pericytes toward a tumor-supportive myofibroblast phenotype. In mouse xenograft models, early intervention with rosiglitazone, a PPARγ agonist, demonstrated significant antitumor effects; however, following the development of a palpable tumor, the antitumor effects of rosiglitazone were negated by the repression of PPARγ in the mouse stroma. In summary, PPARγ activity in healthy tissues places several stromal cell types in an antitumorigenic state, directly inhibiting EC proliferation, maintaining adipocyte differentiation, and suppressing the transition of pericytes into tumor-supportive myofibroblasts.


Subject(s)
Breast Neoplasms , Animals , Female , Humans , Mice , Adipocytes/metabolism , Breast Neoplasms/pathology , Endothelial Cells/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Rosiglitazone/pharmacology
3.
bioRxiv ; 2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37333362

ABSTRACT

Esophageal adenocarcinoma arises from Barrett's esophagus, a precancerous metaplastic replacement of squamous by columnar epithelium in response to chronic inflammation. Multi-omics profiling, integrating single-cell transcriptomics, extracellular matrix proteomics, tissue-mechanics and spatial proteomics of 64 samples from 12 patients' paths of progression from squamous epithelium through metaplasia, dysplasia to adenocarcinoma, revealed shared and patient-specific progression characteristics. The classic metaplastic replacement of epithelial cells was paralleled by metaplastic changes in stromal cells, ECM and tissue stiffness. Strikingly, this change in tissue state at metaplasia was already accompanied by appearance of fibroblasts with characteristics of carcinoma-associated fibroblasts and of an NK cell-associated immunosuppressive microenvironment. Thus, Barrett's esophagus progresses as a coordinated multi-component system, supporting treatment paradigms that go beyond targeting cancerous cells to incorporating stromal reprogramming.

4.
Gastroenterology ; 165(2): 374-390, 2023 08.
Article in English | MEDLINE | ID: mdl-37196797

ABSTRACT

BACKGROUND & AIMS: Elements of field cancerization, including atrophic gastritis, metaplasia, and dysplasia, promote gastric cancer development in association with chronic inflammation. However, it remains unclear how stroma changes during carcinogenesis and how the stroma contributes to progression of gastric preneoplasia. Here we investigated heterogeneity of fibroblasts, one of the most important elements in the stroma, and their roles in neoplastic transformation of metaplasia. METHODS: We used single-cell transcriptomics to evaluate the cellular heterogeneity of mucosal cells from patients with gastric cancer. Tissue sections from the same cohort and tissue microarrays were used to identify the geographical distribution of distinct fibroblast subsets. We further evaluated the role of fibroblasts from pathologic mucosa in dysplastic progression of metaplastic cells using patient-derived metaplastic gastroids and fibroblasts. RESULTS: We identified 4 subsets of fibroblasts within stromal cells defined by the differential expression of PDGFRA, FBLN2, ACTA2, or PDGFRB. Each subset was distributed distinctively throughout stomach tissues with different proportions at each pathologic stage. The PDGFRα+ subset expanded in metaplasia and cancer compared with normal, maintaining a close proximity with the epithelial compartment. Co-culture of metaplasia- or cancer-derived fibroblasts with gastroids showing the characteristics of spasmolytic polypeptide-expressing metaplasia-induced disordered growth, loss of metaplastic markers, and increases in markers of dysplasia. Culture of metaplastic gastroids with conditioned media from metaplasia- or cancer-derived fibroblasts also promoted dysplastic transition. CONCLUSIONS: These findings indicate that fibroblast associations with metaplastic epithelial cells can facilitate direct transition of metaplastic spasmolytic polypeptide-expressing metaplasia cell lineages into dysplastic lineages.


Subject(s)
Gastric Mucosa , Stomach Neoplasms , Humans , Gastric Mucosa/pathology , Stomach Neoplasms/pathology , Hyperplasia , Metaplasia/pathology , Fibroblasts/metabolism
5.
Proteomics ; 23(7-8): e2200021, 2023 04.
Article in English | MEDLINE | ID: mdl-36228107

ABSTRACT

Early events associated with chronic inflammation and cancer involve significant remodeling of the extracellular matrix (ECM), which greatly affects its composition and functional properties. Using lung squamous cell carcinoma (LSCC), a chronic inflammation-associated cancer (CIAC), we optimized a robust proteomic pipeline to discover potential biomarker signatures and protein changes specifically in the stroma. We combined ECM enrichment from fresh human tissues, data-independent acquisition (DIA) strategies, and stringent statistical processing to analyze "Tumor" and matched adjacent histologically normal ("Matched Normal") tissues from patients with LSCC. Overall, 1802 protein groups were quantified with at least two unique peptides, and 56% of those proteins were annotated as "extracellular." Confirming dramatic ECM remodeling during CIAC progression, 529 proteins were significantly altered in the "Tumor" compared to "Matched Normal" tissues. The signature was typified by a coordinated loss of basement membrane proteins and small leucine-rich proteins. The dramatic increase in the stromal levels of SERPINH1/heat shock protein 47, that was discovered using our ECM proteomic pipeline, was validated by immunohistochemistry (IHC) of "Tumor" and "Matched Normal" tissues, obtained from an independent cohort of LSCC patients. This integrated workflow provided novel insights into ECM remodeling during CIAC progression, and identified potential biomarker signatures and future therapeutic targets.


Subject(s)
Carcinoma, Squamous Cell , Proteomics , Humans , Extracellular Matrix/metabolism , Lung/metabolism , Carcinoma, Squamous Cell/pathology , Inflammation/metabolism , Extracellular Matrix Proteins/metabolism
6.
Cell Syst ; 13(8): 644-664.e8, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35863345

ABSTRACT

The rise and fall of estrogen and progesterone across menstrual cycles and during pregnancy regulates breast development and modifies cancer risk. How these hormones impact each cell type in the breast remains poorly understood because they act indirectly through paracrine networks. Using single-cell analysis of premenopausal breast tissue, we reveal a network of coordinated transcriptional programs representing the tissue-level response to changing hormone levels. Our computational approach, DECIPHER-seq, leverages person-to-person variability in breast composition and cell state to uncover programs that co-vary across individuals. We use differences in cell-type proportions to infer a subset of programs that arise from direct cell-cell interactions regulated by hormones. Further, we demonstrate that prior pregnancy and obesity modify hormone responsiveness through distinct mechanisms: obesity reduces the proportion of hormone-responsive cells, whereas pregnancy dampens the direct response of these cells to hormones. Together, these results provide a comprehensive map of the cycling human breast.


Subject(s)
Breast , Progesterone , Breast/metabolism , Cell Communication , Estrogens/metabolism , Female , Humans , Obesity/metabolism , Pregnancy , Progesterone/metabolism
8.
Cell Signal ; 28(12): 1923-1932, 2016 12.
Article in English | MEDLINE | ID: mdl-27705752

ABSTRACT

Endogenous Plastic Somatic (ePS) cells isolated from adult human tissues exhibit extensive lineage plasticity in vitro and in vivo. Here we visualize these rare ePS cells in a latent state, i.e. lacking SOX2, OCT3/4 and NANOG (SON) expression, in non-diseased breast specimens through immunohistochemical analysis of previously identified ePS-specific biomarkers (CD73+, EpCAM+ and CD90-). We also report a novel mechanism by which these latent ePS cells acquire SON expression and plasticity in vitro. Four extracellular factors are necessary for the acquisition of SON expression and lineage plasticity in ePS cells: adenosine (which is produced by the 5' ecto-nucleotidase CD73 and activates in turn the PKA-dependent IL6/STAT3 pathway through the adenosine receptor ADORA2b), IL6, FGF2 and ACTIVIN A. Blocking any pathway component renders ePS cells incapable of SON expression and lineage plasticity. Notably, hESCs do not use adenosine or IL6 nor they express CD73 or ADORA2b and inhibition of adenosine signaling does not ablate their plasticity. Therefore, the data presented here delineate novel circuitry and physiological signals for accessing SON expression in rare, undifferentiated human cells.


Subject(s)
5'-Nucleotidase/metabolism , Cell Plasticity , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/metabolism , SOXB1 Transcription Factors/metabolism , Adenosine/metabolism , Adult , Animals , Autocrine Communication , Biomarkers/metabolism , Breast/metabolism , Cell Differentiation , Cyclic AMP-Dependent Protein Kinases/metabolism , Feeder Cells/cytology , Female , Fibroblast Growth Factor 2/metabolism , GPI-Linked Proteins/metabolism , Human Embryonic Stem Cells/metabolism , Humans , Immunohistochemistry , Interleukin-6/metabolism , Mice , Receptor, Adenosine A2B/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Thy-1 Antigens/metabolism
9.
Genes Dev ; 30(9): 1002-19, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27151975

ABSTRACT

The tumor stroma is no longer seen solely as physical support for mutated epithelial cells but as an important modulator and even a driver of tumorigenicity. Within the tumor stromal milieu, heterogeneous populations of fibroblast-like cells, collectively termed carcinoma-associated fibroblasts (CAFs), are key players in the multicellular, stromal-dependent alterations that contribute to malignant initiation and progression. This review focuses on novel insights into the contributions of CAFs to disease progression, emergent events leading to the generation of CAFs, identification of CAF-specific biomarkers predictive of disease outcome, and recent therapeutic approaches aimed at blunting or reverting detrimental protumorigenic phenotypes associated with CAFs.


Subject(s)
Carcinoma/pathology , Fibroblasts/pathology , Animals , Carcinoma/physiopathology , Carcinoma/therapy , Disease Progression , Humans
10.
Sci Rep ; 5: 15153, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26472542

ABSTRACT

3D tissue culture models are utilized to study breast cancer and other pathologies because they better capture the complexity of in vivo tissue architecture compared to 2D models. However, to mimic the in vivo environment, the mechanics and geometry of the ECM must also be considered. Here, we studied the mechanical environment created in two 3D models, the overlay protocol (OP) and embedded protocol (EP). Mammary epithelial acini features were compared using OP or EP under conditions known to alter acinus organization, i.e. collagen crosslinking and/or ErbB2 receptor activation. Finite element analysis and active microrheology demonstrated that OP creates a physically asymmetric environment with non-uniform mechanical stresses in radial and circumferential directions. Further contrasting with EP, acini in OP displayed cooperation between ErbB2 signalling and matrix crosslinking. These differences in acini phenotype observed between OP and EP highlight the functional impact of physical symmetry in 3D tissue culture models.


Subject(s)
Models, Biological , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Culture Techniques , Cell Line, Tumor , Cell Movement , Collagen/chemistry , Drug Combinations , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Female , Finite Element Analysis , Humans , Laminin/chemistry , Optical Tweezers , Phenotype , Proteoglycans/chemistry , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/metabolism , Rheology , Signal Transduction , Stress, Mechanical
11.
Org Biomol Chem ; 13(45): 11078-86, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26400105

ABSTRACT

Cyclooxygenases (COXs) are enzymes that play a vital role in the inflammatory cascade through the generation of prostaglandins. Their over-expression has been implicated in numerous diseases. In particular, over-expression of COX-2 has been shown to be a predictive biomarker for progression of pre-malignant lesions towards invasive cancer in various tissues. This makes the early detection of COX-2 expressing lesions of high clinical relevance. Herein we describe the development of the first self-immolating trigger which targets COXs. We incorporated our trigger design into 2 activatable fluorogenic probes and demonstrated COX-specific activation in vitro. Experimental data revealed probe activation was likely caused by solvent-exposed amino acids on the surface of the COXs. Overall, the probes reported here mark the first step towards developing self-immolating imaging/therapeutic agents targeted to specific COXs.


Subject(s)
Aspirin/analogs & derivatives , Aspirin/metabolism , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Animals , Cell Line , Cyclooxygenase 1/analysis , Cyclooxygenase 2/analysis , Humans , Mice , Models, Molecular , Optical Imaging , Sheep , Spectrometry, Fluorescence , Swine
12.
Nature ; 518(7539): 317-30, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25693563

ABSTRACT

The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.


Subject(s)
Epigenesis, Genetic/genetics , Epigenomics , Genome, Human/genetics , Base Sequence , Cell Lineage/genetics , Cells, Cultured , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Human/chemistry , Chromosomes, Human/genetics , Chromosomes, Human/metabolism , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Methylation , Datasets as Topic , Enhancer Elements, Genetic/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Histones/metabolism , Humans , Organ Specificity/genetics , RNA/genetics , Reference Values
13.
Nat Commun ; 6: 6351, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25690954

ABSTRACT

While significant effort has been dedicated to the characterization of epigenetic changes associated with prenatal differentiation, relatively little is known about the epigenetic changes that accompany post-natal differentiation where fully functional differentiated cell types with limited lifespans arise. Here we sought to address this gap by generating epigenomic and transcriptional profiles from primary human breast cell types isolated from disease-free human subjects. From these data we define a comprehensive human breast transcriptional network, including a set of myoepithelial- and luminal epithelial-specific intronic retention events. Intersection of epigenetic states with RNA expression from distinct breast epithelium lineages demonstrates that mCpG provides a stable record of exonic and intronic usage, whereas H3K36me3 is dynamic. We find a striking asymmetry in epigenomic reprogramming between luminal and myoepithelial cell types, with the genomes of luminal cells harbouring more than twice the number of hypomethylated enhancer elements compared with myoepithelial cells.


Subject(s)
Breast/metabolism , Epigenesis, Genetic , Gene Expression Regulation , Breast/cytology , Cell Cycle , Cell Differentiation , Cell Separation , Chromatin/chemistry , Chromatin Immunoprecipitation , CpG Islands , Epigenomics , Epithelial Cells/cytology , Exons , Female , Flow Cytometry , Genome, Human , Histones/chemistry , Humans , Introns , Karyotyping , MicroRNAs/metabolism , Sequence Analysis, RNA , Transcription, Genetic
14.
Nat Commun ; 6: 6363, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25691127

ABSTRACT

The role of intermediate methylation states in DNA is unclear. Here, to comprehensively identify regions of intermediate methylation and their quantitative relationship with gene activity, we apply integrative and comparative epigenomics to 25 human primary cell and tissue samples. We report 18,452 intermediate methylation regions located near 36% of genes and enriched at enhancers, exons and DNase I hypersensitivity sites. Intermediate methylation regions average 57% methylation, are predominantly allele-independent and are conserved across individuals and between mouse and human, suggesting a conserved function. These regions have an intermediate level of active chromatin marks and their associated genes have intermediate transcriptional activity. Exonic intermediate methylation correlates with exon inclusion at a level between that of fully methylated and unmethylated exons, highlighting gene context-dependent functions. We conclude that intermediate DNA methylation is a conserved signature of gene regulation and exon usage.


Subject(s)
DNA Methylation , Gene Expression Regulation , Genome, Human , Synteny , Animals , Epigenomics , Evolution, Molecular , Histone Code , Humans , Mice
15.
Nat Commun ; 5: 5442, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25421844

ABSTRACT

Developmental history shapes the epigenome and biological function of differentiated cells. Epigenomic patterns have been broadly attributed to the three embryonic germ layers. Here we investigate how developmental origin influences epigenomes. We compare key epigenomes of cell types derived from surface ectoderm (SE), including keratinocytes and breast luminal and myoepithelial cells, against neural crest-derived melanocytes and mesoderm-derived dermal fibroblasts, to identify SE differentially methylated regions (SE-DMRs). DNA methylomes of neonatal keratinocytes share many more DMRs with adult breast luminal and myoepithelial cells than with melanocytes and fibroblasts from the same neonatal skin. This suggests that SE origin contributes to DNA methylation patterning, while shared skin tissue environment has limited effect on epidermal keratinocytes. Hypomethylated SE-DMRs are in proximity to genes with SE relevant functions. They are also enriched for enhancer- and promoter-associated histone modifications in SE-derived cells, and for binding motifs of transcription factors important in keratinocyte and mammary gland biology. Thus, epigenomic analysis of cell types with common developmental origin reveals an epigenetic signature that underlies a shared gene regulatory network.


Subject(s)
Ectoderm/metabolism , Epigenesis, Genetic , Gene Regulatory Networks , Cell Differentiation , Cells, Cultured , DNA Methylation , Ectoderm/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Melanocytes/cytology , Melanocytes/metabolism , Promoter Regions, Genetic , Species Specificity
16.
Biochem Biophys Res Commun ; 446(2): 434-40, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24607279

ABSTRACT

Membrane skeletal protein 4.1R(80) plays a key role in regulation of erythrocyte plasticity. Protein 4.1R(80) interactions with transmembrane proteins, such as glycophorin C (GPC), are regulated by Ca(2+)-saturated calmodulin (Ca(2+)/CaM) through simultaneous binding to a short peptide (pep11; A(264)KKLWKVCVEHHTFFRL) and a serine residue (Ser(185)), both located in the N-terminal 30 kDa FERM domain of 4.1R(80) (H·R30). We have previously demonstrated that CaM binding to H·R30 is Ca(2+)-independent and that CaM binding to H·R30 is responsible for the maintenance of H·R30 ß-sheet structure. However, the mechanisms responsible for the regulation of CaM binding to H·R30 are still unknown. To investigate this, we took advantage of similarities and differences in the structure of Coracle, the Drosophila sp. homologue of human 4.1R(80), i.e. conservation of the pep11 sequence but substitution of the Ser(185) residue with an alanine residue. We show that the H·R30 homologue domain of Coracle, Cor30, also binds to CaM in a Ca(2+)-independent manner and that the Ca(2+)/CaM complex does not affect Cor30 binding to the transmembrane protein GPC. We also document that both H·R30 and Cor30 bind to phosphatidylinositol-4,5 bisphosphate (PIP2) and other phospholipid species and that that PIP2 inhibits Ca(2+)-free CaM but not Ca(2+)-saturated CaM binding to Cor30. We conclude that PIP2 may play an important role as a modulator of apo-CaM binding to 4.1R(80) throughout evolution.


Subject(s)
Calcium/chemistry , Calmodulin/metabolism , Cytoskeletal Proteins/metabolism , Drosophila/metabolism , Membrane Proteins/metabolism , Phosphatidylinositol 4,5-Diphosphate/pharmacology , Animals , Binding Sites , Calmodulin/chemistry , Cytoskeletal Proteins/chemistry , Humans , Membrane Proteins/chemistry , Phosphatidylinositol 4,5-Diphosphate/chemistry , Protein Binding/drug effects
17.
Genome Res ; 23(9): 1522-40, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23804400

ABSTRACT

DNA methylation plays key roles in diverse biological processes such as X chromosome inactivation, transposable element repression, genomic imprinting, and tissue-specific gene expression. Sequencing-based DNA methylation profiling provides an unprecedented opportunity to map and compare complete DNA methylomes. This includes one of the most widely applied technologies for measuring DNA methylation: methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq), coupled with a complementary method, methylation-sensitive restriction enzyme sequencing (MRE-seq). A computational approach that integrates data from these two different but complementary assays and predicts methylation differences between samples has been unavailable. Here, we present a novel integrative statistical framework M&M (for integration of MeDIP-seq and MRE-seq) that dynamically scales, normalizes, and combines MeDIP-seq and MRE-seq data to detect differentially methylated regions. Using sample-matched whole-genome bisulfite sequencing (WGBS) as a gold standard, we demonstrate superior accuracy and reproducibility of M&M compared to existing analytical methods for MeDIP-seq data alone. M&M leverages the complementary nature of MeDIP-seq and MRE-seq data to allow rapid comparative analysis between whole methylomes at a fraction of the cost of WGBS. Comprehensive analysis of nineteen human DNA methylomes with M&M reveals distinct DNA methylation patterns among different tissue types, cell types, and individuals, potentially underscoring divergent epigenetic regulation at different scales of phenotypic diversity. We find that differential DNA methylation at enhancer elements, with concurrent changes in histone modifications and transcription factor binding, is common at the cell, tissue, and individual levels, whereas promoter methylation is more prominent in reinforcing fundamental tissue identities.


Subject(s)
Algorithms , DNA Methylation , Genome, Human , Sequence Analysis, DNA/methods , Data Interpretation, Statistical , High-Throughput Nucleotide Sequencing/methods , Humans , Organ Specificity
18.
Mol Cell ; 50(4): 552-64, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23706820

ABSTRACT

Cellular stress results in profound changes in RNA and protein synthesis. How cells integrate this intrinsic, p53-centered program with extracellular signals is largely unknown. We demonstrate that TGF-ß1 signaling interferes with the stress response through coordinate transcriptional and translational repression of p53 levels, which reduces p53-activated transcription, and apoptosis in precancerous cells. Mechanistically, E2F-4 binds constitutively to the TP53 gene and induces transcription. TGF-ß1-activated Smads are recruited to a composite Smad/E2F-4 element by an E2F-4/p107 complex that switches to a Smad corepressor, which represses TP53 transcription. TGF-ß1 also causes dissociation of ribosomal protein RPL26 and elongation factor eEF1A from p53 mRNA, thereby reducing p53 mRNA association with polyribosomes and p53 translation. TGF-ß1 signaling is dominant over stress-induced transcription and translation of p53 and prevents stress-imposed downregulation of Smad proteins. Thus, crosstalk between the TGF-ß and p53 pathways defines a major node of regulation in the cellular stress response, enhancing drug resistance.


Subject(s)
Gene Expression Regulation/drug effects , Stress, Physiological/drug effects , Transforming Growth Factor beta1/pharmacology , Tumor Suppressor Protein p53/genetics , Apoptosis/drug effects , Apoptosis/genetics , Base Sequence , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , E2F4 Transcription Factor/genetics , E2F4 Transcription Factor/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Immunohistochemistry , Mammary Glands, Human/cytology , Molecular Sequence Data , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Smad Proteins/genetics , Smad Proteins/metabolism , Stress, Physiological/genetics , Tumor Suppressor Protein p53/metabolism
19.
Nat Genet ; 45(7): 836-41, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23708189

ABSTRACT

Transposable element (TE)-derived sequences comprise half of the human genome and DNA methylome and are presumed to be densely methylated and inactive. Examination of genome-wide DNA methylation status within 928 TE subfamilies in human embryonic and adult tissues identified unexpected tissue-specific and subfamily-specific hypomethylation signatures. Genes proximal to tissue-specific hypomethylated TE sequences were enriched for functions important for the relevant tissue type, and their expression correlated strongly with hypomethylation within the TEs. When hypomethylated, these TE sequences gained tissue-specific enhancer marks, including monomethylation of histone H3 at lysine 4 (H3K4me1) and occupancy by p300, and a majority exhibited enhancer activity in reporter gene assays. Many such TEs also harbored binding sites for transcription factors that are important for tissue-specific functions and showed evidence of evolutionary selection. These data suggest that sequences derived from TEs may be responsible for wiring tissue type-specific regulatory networks and may have acquired tissue-specific epigenetic regulation.


Subject(s)
DNA Methylation , DNA Transposable Elements/genetics , Enhancer Elements, Genetic/genetics , Multigene Family/genetics , Adult , Binding Sites/genetics , Cells, Cultured , Chromosome Mapping , Embryo, Mammalian , Epigenesis, Genetic , Genome, Human , Histones/genetics , Histones/metabolism , Humans , Organ Specificity/genetics
20.
Sci Rep ; 3: 1449, 2013.
Article in English | MEDLINE | ID: mdl-23618955

ABSTRACT

To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Models, Biological , Neoplasm Metastasis/pathology , Neoplasm Metastasis/physiopathology , Neoplasm Proteins/metabolism , Cell Line, Tumor , Cell Movement , Cell Size , Cell Survival , Computer Simulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...