Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(4): 112401, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37060565

ABSTRACT

Cell-to-cell heterogeneity is vital for tumor evolution and survival. How cancer cells achieve and exploit this heterogeneity remains an active area of research. Here, we identify c-Myc as a highly heterogeneously expressed transcription factor and an orchestrator of transcriptional and phenotypic diversity in cancer cells. By monitoring endogenous c-Myc protein in individual living cells, we report the surprising pulsatile nature of c-Myc expression and the extensive cell-to-cell variability in its dynamics. We further show that heterogeneity in c-Myc dynamics leads to variable target gene transcription and that timing of c-Myc expression predicts cell-cycle progression rates and drug sensitivities. Together, our data advocate for a model in which cancer cells increase the heterogeneity of functionally diverse transcription factors such as c-Myc to rapidly survey transcriptional landscapes and survive stress.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-myc , Humans , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factors/metabolism , Gene Expression Regulation , Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
2.
J Med Chem ; 64(5): 2534-2575, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33596065

ABSTRACT

The biological and medicinal impacts of proteolysis-targeting chimeras (PROTACs) and related chimeric molecules that effect intracellular degradation of target proteins via ubiquitin ligase-mediated ubiquitination continue to grow. However, these chimeric entities are relatively large compounds that often possess molecular characteristics, which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. We therefore explored the conjugation of such molecules to monoclonal antibodies using technologies originally developed for cytotoxic payloads so as to provide alternate delivery options for these novel agents. In this report, we describe the first phase of our systematic development of antibody-drug conjugates (ADCs) derived from bromodomain-containing protein 4 (BRD4)-targeting chimeric degrader entities. We demonstrate the antigen-dependent delivery of the degrader payloads to PC3-S1 prostate cancer cells along with related impacts on MYC transcription and intracellular BRD4 levels. These experiments culminate with the identification of one degrader conjugate, which exhibits antigen-dependent antiproliferation effects in LNCaP prostate cancer cells.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Dipeptides/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Immunoconjugates/pharmacology , Proteolysis/drug effects , Transcription Factors/antagonists & inhibitors , Antibodies, Monoclonal/immunology , Antigens, Neoplasm/immunology , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Dipeptides/chemical synthesis , Dipeptides/pharmacokinetics , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Oxidoreductases/immunology , PC-3 Cells , Transcription Factors/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
3.
PLoS One ; 15(6): e0235343, 2020.
Article in English | MEDLINE | ID: mdl-32584896

ABSTRACT

Triple Negative Breast Cancer (TNBC) is a heterogeneous disease lacking known molecular drivers and effective targeted therapies. Cytotoxic chemotherapy remains the mainstay of treatment for TNBCs, which have significantly poorer survival rates compared to other breast cancer subtypes. In addition to changes within the coding genome, aberrant enhancer activity is a well-established contributor to tumorigenesis. Here we use H3K27Ac chromatin immunoprecipitation followed by sequencing (ChIP-Seq) to map the active cis-regulatory landscape in TNBC. We identify distinct disease subtypes associated with specific enhancer activity, and over 2,500 unique superenhancers acquired by tumor cells but absent from normal breast tissue. To identify potential actionable disease drivers, we probed the dependency on genes that associate with tumor-specific enhancers by CRISPR screening. In this way we identify a number of tumor-specific dependencies, including a previously uncharacterized dependency on the TGFß pseudo-receptor BAMBI.


Subject(s)
Enhancer Elements, Genetic/genetics , Oncogenes/genetics , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Chromatin Immunoprecipitation , Female , Gene Editing , Gene Expression Regulation, Neoplastic , Histones/chemistry , Histones/genetics , Histones/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA, Guide, Kinetoplastida/metabolism , Triple Negative Breast Neoplasms/genetics
4.
ChemMedChem ; 15(1): 17-25, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31674143

ABSTRACT

The ability to selectively degrade proteins with bifunctional small molecules has the potential to fundamentally alter therapy in a variety of diseases. However, the relatively large size of these chimeric molecules often results in challenging physico-chemical properties (e. g., low aqueous solubility) and poor pharmacokinetics which may complicate their in vivo applications. We recently discovered an exquisitely potent chimeric BET degrader (GNE-987) which exhibited picomolar cell potencies but also demonstrated low in vivo exposures. In an effort to improve the pharmacokinetic properties of this molecule, we discovered the first degrader-antibody conjugate by attaching GNE-987 to an anti-CLL1 antibody via a novel linker. A single IV dose of the conjugate afforded sustained in vivo exposures that resulted in antigen-specific tumor regressions. Enhancement of a chimeric protein degrader with poor in vivo properties through antibody conjugation thereby expands the utility of directed protein degradation as both a biological tool and a therapeutic possibility.


Subject(s)
Antibodies, Monoclonal/chemistry , Cell Cycle Proteins/metabolism , Heterocyclic Compounds, 4 or More Rings/chemistry , Immunoconjugates/chemistry , Transcription Factors/metabolism , Animals , Antibodies, Monoclonal/immunology , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/chemistry , Female , Half-Life , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Lectins, C-Type/immunology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Mice , Mice, SCID , Protein Binding , Proteolysis/drug effects , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Mitogen/immunology , Surface Plasmon Resonance , Transcription Factors/antagonists & inhibitors , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Xenograft Model Antitumor Assays
5.
Cell Rep ; 27(1): 269-281.e4, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30943407

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are found in most cancer malignancies and support tumorigenesis by suppressing immunity and promoting tumor growth. Here we identify the bromodomain (BRD) of CBP/EP300 as a critical regulator of H3K27 acetylation (H3K27ac) in MDSCs across promoters and enhancers of pro-tumorigenic target genes. In preclinical tumor models, in vivo administration of a CBP/EP300-BRD inhibitor (CBP/EP300-BRDi) alters intratumoral MDSCs and attenuates established tumor growth in immunocompetent tumor-bearing mice, as well as in MDSC-dependent xenograft models. Inhibition of CBP/EP300-BRD redirects tumor-associated MDSCs from a suppressive to an inflammatory phenotype through downregulation of STAT pathway-related genes and inhibition of Arg1 and iNOS. Similarly, CBP/EP300-BRDi decreases differentiation and suppressive function of human MDSCs in vitro. Our findings uncover a role of CBP/EP300-BRD in intratumoral MDSCs that may be targeted therapeutically to boost anti-tumor immunity.


Subject(s)
Carcinogenesis/metabolism , Histones/metabolism , Myeloid Cells/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , Animals , Arginase/genetics , Arginase/metabolism , Cell Line, Tumor , Cells, Cultured , Enhancer Elements, Genetic , Humans , Mice , Mice, Inbred BALB C , Mice, SCID , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Promoter Regions, Genetic , Protein Domains , STAT Transcription Factors/metabolism , p300-CBP Transcription Factors/chemistry
6.
Genome Biol ; 20(1): 21, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30683138

ABSTRACT

BACKGROUND: Genome-wide loss-of-function screens using the CRISPR/Cas9 system allow the efficient discovery of cancer cell vulnerabilities. While several studies have focused on correcting for DNA cleavage toxicity biases associated with copy number alterations, the effects of sgRNAs co-targeting multiple genomic loci in CRISPR screens have not been discussed. RESULTS: In this work, we analyze CRISPR essentiality screen data from 391 cancer cell lines to characterize biases induced by multi-target sgRNAs. We investigate two types of multi-targets: on-targets predicted through perfect sequence complementarity and off-targets predicted through sequence complementarity with up to two nucleotide mismatches. We find that the number of on-targets and off-targets both increase sgRNA activity in a cell line-specific manner and that existing additive models of gene knockout effects fail at capturing genetic interactions that may occur between co-targeted genes. We use synthetic lethality between paralog genes to show that genetic interactions can introduce biases in essentiality scores estimated from multi-target sgRNAs. We further show that single-mismatch tolerant sgRNAs can confound the analysis of gene essentiality and lead to incorrect co-essentiality functional networks. Lastly, we also find that single nucleotide polymorphisms located in protospacer regions can impair on-target activity as a result of mismatch tolerance. CONCLUSION: We show the impact of multi-target effects on estimating cancer cell dependencies and the impact of off-target effects caused by mismatch tolerance in sgRNA-DNA binding.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Targeting , Genomics/methods , RNA, Guide, Kinetoplastida , Cell Line, Tumor , Humans , Myosin Light Chains/genetics , Neoplasms/genetics , SOX9 Transcription Factor/genetics , SOXE Transcription Factors/genetics
7.
Cell Rep ; 24(7): 1722-1729, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30110629

ABSTRACT

Acetylation of histone H3 at lysine 27 is a well-defined marker of enhancer activity. However, the functional impact of this modification at enhancers is poorly understood. Here, we use a chemical genetics approach to acutely block the function of the cAMP response element binding protein (CREB) binding protein (CBP)/P300 bromodomain in models of hematological malignancies and describe a consequent loss of H3K27Ac specifically from enhancers, despite the continued presence of CBP/P300 at chromatin. Using this approach to dissect the role of H3K27Ac at enhancers, we identify a critical role for this modification in the production of enhancer RNAs and transcription of enhancer-regulated gene networks.


Subject(s)
Enhancer Elements, Genetic , Histones/metabolism , Protein Processing, Post-Translational , RNA, Neoplasm/genetics , p300-CBP Transcription Factors/genetics , Acetylation , Binding Sites , Cell Line, Tumor , Chromatin/chemistry , Chromatin/metabolism , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Histones/genetics , Humans , Lysine/metabolism , Protein Binding , Protein Domains , RNA, Neoplasm/metabolism , Transcription, Genetic , p300-CBP Transcription Factors/metabolism
8.
J Med Chem ; 60(22): 9162-9183, 2017 11 22.
Article in English | MEDLINE | ID: mdl-28892380

ABSTRACT

Inhibition of the bromodomain of the transcriptional regulator CBP/P300 is an especially interesting new therapeutic approach in oncology. We recently disclosed in vivo chemical tool 1 (GNE-272) for the bromodomain of CBP that was moderately potent and selective over BRD4(1). In pursuit of a more potent and selective CBP inhibitor, we used structure-based design. Constraining the aniline of 1 into a tetrahydroquinoline motif maintained potency and increased selectivity 2-fold. Structure-activity relationship studies coupled with further structure-based design targeting the LPF shelf, BC loop, and KAc regions allowed us to significantly increase potency and selectivity, resulting in the identification of non-CNS penetrant 19 (GNE-781, TR-FRET IC50 = 0.94 nM, BRET IC50 = 6.2 nM; BRD4(1) IC50 = 5100 nΜ) that maintained good in vivo PK properties in multiple species. Compound 19 displays antitumor activity in an AML tumor model and was also shown to decrease Foxp3 transcript levels in a dose dependent manner.


Subject(s)
Antineoplastic Agents/pharmacology , CREB-Binding Protein/antagonists & inhibitors , Pyrazoles/pharmacology , Pyridines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , CREB-Binding Protein/chemistry , Dogs , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , HEK293 Cells , Humans , Macaca fascicularis , Male , Mice , Protein Domains , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacokinetics , RNA/genetics , Rats, Sprague-Dawley , Structure-Activity Relationship , Xenograft Model Antitumor Assays
9.
Cancer Res ; 77(20): 5564-5575, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28819026

ABSTRACT

Resistance invariably develops to antiandrogen therapies used to treat newly diagnosed prostate cancers, but effective treatments for castration-resistant disease remain elusive. Here, we report that the transcriptional coactivator CBP/p300 is required to maintain the growth of castration-resistant prostate cancer. To exploit this vulnerability, we developed a novel small-molecule inhibitor of the CBP/p300 bromodomain that blocks prostate cancer growth in vitro and in vivo Molecular dissection of the consequences of drug treatment revealed a critical role for CBP/p300 in histone acetylation required for the transcriptional activity of the androgen receptor and its target gene expression. Our findings offer a preclinical proof of concept for small-molecule therapies to target the CBP/p300 bromodomain as a strategy to treat castration-resistant prostate cancer. Cancer Res; 77(20); 5564-75. ©2017 AACR.


Subject(s)
E1A-Associated p300 Protein/antagonists & inhibitors , Prostatic Neoplasms, Castration-Resistant/drug therapy , Small Molecule Libraries/pharmacology , Animals , Cell Growth Processes/drug effects , Cell Line, Tumor , E1A-Associated p300 Protein/deficiency , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism , Female , Gene Expression , Gene Knockdown Techniques , Humans , Male , Mice , Mice, SCID , Molecular Targeted Therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Domains , Random Allocation , Receptors, Androgen/metabolism , Signal Transduction/drug effects , Transfection , Xenograft Model Antitumor Assays
10.
J Med Chem ; 59(23): 10549-10563, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27682507

ABSTRACT

The single bromodomain of the closely related transcriptional regulators CBP/EP300 is a target of much recent interest in cancer and immune system regulation. A co-crystal structure of a ligand-efficient screening hit and the CBP bromodomain guided initial design targeting the LPF shelf, ZA loop, and acetylated lysine binding regions. Structure-activity relationship studies allowed us to identify a more potent analogue. Optimization of permeability and microsomal stability and subsequent improvement of mouse hepatocyte stability afforded 59 (GNE-272, TR-FRET IC50 = 0.02 µM, BRET IC50 = 0.41 µM, BRD4(1) IC50 = 13 µM) that retained the best balance of cell potency, selectivity, and in vivo PK. Compound 59 showed a marked antiproliferative effect in hematologic cancer cell lines and modulates MYC expression in vivo that corresponds with antitumor activity in an AML tumor model.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Pyrazoles/pharmacology , Pyridones/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dogs , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridones/chemical synthesis , Pyridones/chemistry , Structure-Activity Relationship
12.
Elife ; 52016 Jan 05.
Article in English | MEDLINE | ID: mdl-26731516

ABSTRACT

Pharmacological inhibition of chromatin co-regulatory factors represents a clinically validated strategy to modulate oncogenic signaling through selective attenuation of gene expression. Here, we demonstrate that CBP/EP300 bromodomain inhibition preferentially abrogates the viability of multiple myeloma cell lines. Selective targeting of multiple myeloma cell lines through CBP/EP300 bromodomain inhibition is the result of direct transcriptional suppression of the lymphocyte-specific transcription factor IRF4, which is essential for the viability of myeloma cells, and the concomitant repression of the IRF4 target gene c-MYC. Ectopic expression of either IRF4 or MYC antagonizes the phenotypic and transcriptional effects of CBP/EP300 bromodomain inhibition, highlighting the IRF4/MYC axis as a key component of its mechanism of action. These findings suggest that CBP/EP300 bromodomain inhibition represents a viable therapeutic strategy for targeting multiple myeloma and other lymphoid malignancies dependent on the IRF4 network.


Subject(s)
Antineoplastic Agents/pharmacology , E1A-Associated p300 Protein/antagonists & inhibitors , Interferon Regulatory Factors/metabolism , Multiple Myeloma/physiopathology , Peptide Fragments/antagonists & inhibitors , Sialoglycoproteins/antagonists & inhibitors , Cell Line, Tumor , Cell Survival/drug effects , Humans
13.
Clin Cancer Res ; 21(14): 3252-62, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25862760

ABSTRACT

PURPOSE: Chemotherapies are limited by a narrow therapeutic index resulting in suboptimal exposure of the tumor to the drug and acquired tumor resistance. One approach to overcome this is through antibody-drug conjugates (ADC) that facilitate greater potency via target-specific delivery of highly potent cytotoxic agents. EXPERIMENTAL DESIGN: In this study, we used a bioinformatics approach to identify the lymphocyte antigen 6 complex locus E (LY6E), an IFN-inducible glycosylphosphatidylinositol (GPI)-linked cell membrane protein as a promising ADC target. We developed a monoclonal anti-LY6E antibody and characterized in situ LY6E expression in over 750 cancer specimens and normal tissues. Target-dependent anti-LY6E ADC killing was investigated both in vitro and in vivo using patient-derived xenograft models. RESULTS: Using in silico approaches, we found that LY6E was significantly overexpressed and amplified in a wide array of different human solid tumors. IHC analysis revealed high LY6E protein expression in a number of tumor types, such as breast, lung, gastric, ovarian, pancreatic, kidney and head/neck carcinomas. Characterization of the endocytic pathways for LY6E revealed that the LY6E-specific antibody is internalized into cells leading to lysosomal accumulation. Consistent with this, a LY6E-specific ADC inhibited in vitro cell proliferation and produced durable tumor regression in vivo in clinically relevant LY6E-expressing xenograft models. CONCLUSIONS: Our results identify LY6E as a highly promising molecular ADC target for a variety of solid tumor types with current unmet medical need.


Subject(s)
Antigens, Neoplasm/pharmacology , Antigens, Surface/immunology , Antineoplastic Agents/pharmacology , Immunoconjugates/pharmacology , Neoplasms/immunology , Animals , Antibodies, Monoclonal/pharmacology , Antigens, Neoplasm/immunology , Cell Line, Tumor , Flow Cytometry , GPI-Linked Proteins/immunology , Humans , Immunoblotting , Immunohistochemistry , Mice , Mice, SCID , Polymerase Chain Reaction , RNA, Small Interfering , Transfection , Xenograft Model Antitumor Assays
14.
Curr Biol ; 25(5): 671-7, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25660545

ABSTRACT

The kinetochore provides a vital connection between chromosomes and spindle microtubules [1, 2]. Defining the molecular architecture of the core kinetochore components is critical for understanding the mechanisms by which the kinetochore directs chromosome segregation. The KNL1/Mis12 complex/Ndc80 complex (KMN) network acts as the primary microtubule-binding interface at kinetochores [3] and provides a platform to recruit regulatory proteins [4]. Recent work found that the inner kinetochore components CENP-C and CENP-T act in parallel to recruit the KMN network to kinetochores [5-8]. However, due to the presence of these dual pathways, it has not been possible to distinguish differences in the nature of kinetochore assembly downstream of CENP-C or CENP-T. Here, we separated these pathways by targeting CENP-C and CENP-T independently to an ectopic chromosomal locus in human cells. Our work reveals that the organization of the KMN network components downstream of CENP-C and CENP-T is distinct. CENP-C recruits the Ndc80 complex through its interactions with KNL1 and the Mis12 complex. In contrast, CENP-T directly interacts with Ndc80, which in turn promotes KNL1/Mis12 complex recruitment through a separate region on CENP-T, resulting in functional relationships for KMN network localization that are inverted relative to the CENP-C pathway. We also find that distinct regulatory paradigms control the assembly of these pathways, with Aurora B kinase promoting KMN network recruitment to CENP-C and cyclin-dependent kinase (CDK) regulating KMN network recruitment to CENP-T. This work reveals unexpected complexity for the architecture and regulation of the core components of the kinetochore-microtubule interface.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation/physiology , Kinetochores/physiology , M Phase Cell Cycle Checkpoints/physiology , Multiprotein Complexes/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , Cytoskeletal Proteins , Fluorescent Antibody Technique , Gene Components , Humans , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Phosphorylation
15.
Chromosome Res ; 21(4): 407-18, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23793898

ABSTRACT

Chromosomal rearrangements can radically alter gene products and their function, driving tumor formation or progression. However, the molecular origins and evolution of such rearrangements are varied and poorly understood, with cancer cells often containing multiple, complex rearrangements. One mechanism that can lead to genomic rearrangements is the formation of a "dicentric" chromosome containing two functional centromeres. Indeed, such dicentric chromosomes have been observed in cancer cells. Here, we tested the ability of a single dicentric chromosome to contribute to genomic instability and neoplastic conversion in vertebrate cells. We developed a system to transiently and reversibly induce dicentric chromosome formation on a single chromosome with high temporal control. We find that induced dicentric chromosomes are frequently damaged and mis-segregated during mitosis, and that this leads to extensive chromosomal rearrangements including translocations with other chromosomes. Populations of pre-neoplastic cells in which a single dicentric chromosome is induced acquire extensive genomic instability and display hallmarks of cellular transformation including anchorage-independent growth in soft agar. Our results suggest that a single dicentric chromosome could contribute to tumor initiation.


Subject(s)
Carcinogenesis/genetics , Chromosome Aberrations , Gene Rearrangement , Genomics/methods , Animals , Cell Line, Tumor , Centromere/genetics , Fluorescent Antibody Technique , Genomic Instability , In Situ Hybridization, Fluorescence , Mice , Mitosis/genetics , Translocation, Genetic
16.
J Cell Biol ; 201(1): 23-32, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23530067

ABSTRACT

Accurate chromosome segregation requires assembly of the multiprotein kinetochore complex. Prior work has identified more than 100 different kinetochore components in human cells. However, little is known about the regulatory processes that specify their assembly upon mitotic entry and disassembly at mitotic exit. In this paper, we used a live-cell imaging-based assay to quantify kinetochore disassembly kinetics and systematically analyze the role of potential regulatory mechanisms in controlling kinetochore assembly state. We find that kinetochore assembly and disassembly was driven primarily by mitotic phosphorylation downstream of cyclin-dependent kinase (CDK). In addition, we demonstrate that nuclear exclusion of the Ndc80 complex helped restrict kinetochore formation to mitosis. Combining constitutive CDK-dependent phosphorylation of CENP-T and forced nuclear localization of the Ndc80 complex partially prevented kinetochore disassembly at mitotic exit and led to chromosome segregation defects in subsequent divisions. In total, we find that the coordinated temporal regulation of outer kinetochore assembly is essential for accurate cell division.


Subject(s)
Cell Nucleus/metabolism , Chromosome Segregation/physiology , Cyclin-Dependent Kinases/metabolism , Kinetochores/metabolism , Mitosis/physiology , Active Transport, Cell Nucleus/physiology , Cell Line , Cell Nucleus/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cyclin-Dependent Kinases/genetics , Cytoskeletal Proteins , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation/physiology
17.
Nat Cell Biol ; 14(6): 559-61, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22561349

ABSTRACT

The diverse nature of eukaryotic centromere structure has led to a prevailing view that the kinetochore-chromatin interface is fundamentally different in distinct species. Two studies now challenge this dogma with the identification of budding yeast homologues of the vertebrate centromere DNA-binding proteins CENP-T and CENP-W.


Subject(s)
Cell Cycle Proteins/metabolism , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Animals , Cytoskeletal Proteins , Humans
18.
Cell ; 148(3): 487-501, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22304917

ABSTRACT

The multiprotein kinetochore complex must assemble at a specific site on each chromosome to achieve accurate chromosome segregation. Defining the nature of the DNA-protein interactions that specify the position of the kinetochore and provide a scaffold for kinetochore formation remain key goals. Here, we demonstrate that the centromeric histone-fold-containing CENP-T-W and CENP-S-X complexes coassemble to form a stable CENP-T-W-S-X heterotetramer. High-resolution structural analysis of the individual complexes and the heterotetramer reveals similarity to other histone fold-containing complexes including canonical histones within a nucleosome. The CENP-T-W-S-X heterotetramer binds to and supercoils DNA. Mutants designed to compromise heterotetramerization or the DNA-protein contacts around the heterotetramer strongly reduce the DNA binding and supercoiling activities in vitro and compromise kinetochore assembly in vivo. These data suggest that the CENP-T-W-S-X complex forms a unique nucleosome-like structure to generate contacts with DNA, extending the "histone code" beyond canonical nucleosome proteins.


Subject(s)
Centromere/chemistry , Centromere/metabolism , Chickens/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Amino Acid Sequence , Animals , Chromatin/chemistry , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Histones/metabolism , Humans , Kinetochores/chemistry , Kinetochores/metabolism , Models, Molecular , Molecular Sequence Data , Mutation , Protein Structure, Tertiary , X-Ray Diffraction
19.
Cell ; 145(3): 410-22, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21529714

ABSTRACT

Accurate chromosome segregation requires assembly of the multiprotein kinetochore complex at centromeres. Although prior work identified the centromeric histone H3-variant CENP-A as the important upstream factor necessary for centromere specification, in human cells CENP-A is not sufficient for kinetochore assembly. Here, we demonstrate that two constitutive DNA-binding kinetochore components, CENP-C and CENP-T, function to direct kinetochore formation. Replacing the DNA-binding regions of CENP-C and CENP-T with alternate chromosome-targeting domains recruits these proteins to ectopic loci, resulting in CENP-A-independent kinetochore assembly. These ectopic kinetochore-like foci are functional based on the stoichiometric assembly of multiple kinetochore components, including the microtubule-binding KMN network, the presence of microtubule attachments, the microtubule-sensitive recruitment of the spindle checkpoint protein Mad2, and the segregation behavior of foci-containing chromosomes. We additionally find that CENP-T phosphorylation regulates the mitotic assembly of both endogenous and ectopic kinetochores. Thus, CENP-C and CENP-T form a critical regulated platform for vertebrate kinetochore assembly.


Subject(s)
Autoantigens/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Kinetochores/metabolism , Nucleosomes/metabolism , Vertebrates/metabolism , Amino Acid Sequence , Animals , Centromere Protein A , Chickens , HeLa Cells , Humans , Mitosis , Molecular Sequence Data , Phosphorylation
20.
Curr Opin Cell Biol ; 23(1): 102-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20702077

ABSTRACT

Accurate chromosome segregation requires the interaction of chromosomes with the microtubules from the mitotic spindle. This interaction is mediated by the macro-molecular kinetochore complex, which assembles only at the centromeric region of each chromosome. However, how this site is specified and how assembly of the kinetochore structure is regulated in coordination with cell cycle progression remains unclear. Recent studies have begun to shed light on the mechanisms underlying assembly of this complex structure.


Subject(s)
Kinetochores/metabolism , Animals , Humans , Microfilament Proteins/metabolism , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...