Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 31(29): 8042-51, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26139630

ABSTRACT

Langmuir surface pressure, small-angle neutron scattering (SANS), and neutron reflectivity (NR) studies have been performed to determine how formulation of the antifungal drug amphotericin B (AmB), with sodium cholesteryl sulfate (SCS)-as in Amphotec-affects its interactions with ergosterol-containing (model fungal cell) and cholesterol-containing (model mammalian cell) membranes. The effects of mixing AmB in 1:1 molar ratio with cholesteryl sulfate (yielding AmB-SCS micelles) are compared against those of free AmB, using monolayers and bilayers formed from palmitoyloleoylphosphatidylcholine (POPC) in the absence and presence of 30 mol % ergosterol or cholesterol, in all cases employing a 1:0.05 molar ratio of lipid:AmB. Analyses of the (bilayer) SANS and (monolayer) NR data indicate that the equilibrium changes in membrane structure induced in sterol-free and sterol-containing membranes are the same for free AmB and AmB-SCS. Stopped-flow SANS experiments, however, reveal that the structural changes to vesicle membranes occur far more rapidly following exposure to AmB-SCS vs free drug, with the kinetics of these changes varying with membrane composition. With POPC vesicles, the structural changes induced by AmB-SCS become apparent only after several minutes, and equilibrium is reached after ∼30 min. The corresponding onset of changes in POPC-ergosterol and POPC-cholesterol vesicles, however, occurs within ∼5 s, with equilibrium reached after 10 and 120 s, respectively. The rate of insertion of AmB into POPC-sterol membranes is thus increased through formulation as AmB-SCS. Moreover, the differences in monolayer surface pressure and SANS structure-change equilibration times suggest significant rearrangement of AmB within these membranes following insertion. The reduced times to equilibrium for the POPC-ergosterol vs POPC-cholesterol systems are consistent with the known differences in affinity of AmB for these two sterols, and the reduced time to equilibrium for AmB-SCS interaction with POPC-ergosterol membranes vs that for free AmB is consistent with the reduced host toxicity of Amphotec.


Subject(s)
Amphotericin B/chemistry , Cholesterol Esters/chemistry , Membranes, Artificial , Phospholipids/chemistry , Phosphatidylcholines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...