Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Agron Sustain Dev ; 42(3): 53, 2022.
Article in English | MEDLINE | ID: mdl-35702339

ABSTRACT

A profound transformation of agricultural production methods has become unavoidable due to the increase in the world's population, and environmental and climatic challenges. Agroecology is now recognized as a challenging model for agricultural systems, promoting their diversification and adaptation to environmental and socio-economic contexts, with consequences for the entire agri-food system and the development of rural and urban areas. Through a prospective exercise performed at a large interdisciplinary institute, INRAE, a research agenda for agroecology was built that filled a gap through its ambition and interdisciplinarity. It concerned six topics. For genetics, there is a need to study genetic aspects of complex systems (e.g., mixtures of genotypes) and to develop breeding methods for them. For landscapes, challenges lie in effects of heterogeneity at multiple scales, in multifunctionality and in the design of agroecological landscapes. Agricultural equipment and digital technologies show high potential for monitoring dynamics of agroecosystems. For modeling, challenges include approaches to complexity, consideration of spatial and temporal dimensions and representation of the cascade from cropping practices to ecosystem services. The agroecological transition of farms calls for modeling and observational approaches as well as for creating new design methods. Integration of agroecology into food systems raises the issues of product specificity, consumer behavior and organization of markets, standards and public policies. In addition, transversal priorities were identified: (i) generating sets of biological data, through research and participatory mechanisms, that are appropriate for designing agroecological systems and (ii) collecting and using coherent sets of data to enable assessment of vulnerability, resilience and risk in order to evaluate the performance of agroecological systems and to contribute to scaling up. The main lessons learned from this collective exercise can be useful for the entire scientific community engaged in research into agroecology.

2.
Sci Total Environ ; 651(Pt 1): 1-11, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30223216

ABSTRACT

Eutrophication is one of the most common causes of water quality impairment of inland and marine waters. Its best-known manifestations are toxic cyanobacteria blooms in lakes and waterways and proliferations of green macro algae in coastal areas. The term eutrophication is used by both the scientific community and public policy-makers, and therefore has a myriad of definitions. The introduction by the public authorities of regulations to limit eutrophication is a source of tension and debate on the activities identified as contributing or having contributed decisively to these phenomena. Debates on the identification of the driving factors and risk levels of eutrophication, seeking to guide public policies, have led the ministries in charge of the environment and agriculture to ask for a joint scientific appraisal to be conducted on the subject. Four French research institutes were mandated to produce a critical scientific analysis on the latest knowledge of the causes, mechanisms, consequences and predictability of eutrophication phenomena. This paper provides the methodology and the main findings of this two years exercise involving 40 scientific experts.


Subject(s)
Environmental Policy/legislation & jurisprudence , Environmental Restoration and Remediation , Eutrophication , Environmental Restoration and Remediation/legislation & jurisprudence , Environmental Restoration and Remediation/methods , France , Government Regulation
3.
Sci Total Environ ; 635: 1091-1101, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29710564

ABSTRACT

Despite global efforts to monitor water quality in catchments worldwide, tropical and subtropical zones still lack data to study the influence of human activities and climate variations on solute dynamics. In this study, we monitored ten solutes every two weeks for six years (2010-2015) in three nested catchments (2 to30 km2), which contained heterogeneous landscapes composed of forests and agricultural land, and one small neighboring forested catchment (0.4 km2). Data analysis revealed that i) rainfall, discharge and solute concentrations displayed no clear seasonal patterns, unlike many catchments of the temperate zone; ii) solute concentrations in the agricultural area were higher than those in the forested area, but both areas displayed similar temporal patterns due to a common hydroclimatic driver; iii) all four catchments displayed a chemostatic export regime for most of the solutes, similar to catchments of the temperate zone; and iv) a positive correlation was observed between anion concentrations and ENSO (El Niño-Southern Oscillation) index. ENSO appeared to influence both hydroclimatic and anion dynamics in these subtropical catchments.

4.
Sci Rep ; 8(1): 944, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343796

ABSTRACT

Management of agricultural diffuse pollution to water remains a challenge and is influenced by the complex interactions of rainfall-runoff pathways, soil and nutrient management, agricultural landscape heterogeneity and biogeochemical cycling in receiving water bodies. Amplified cycles of weather can also influence nutrient loss to water although they are less considered in policy reviews. Here, we present the development of climate-chemical indicators of diffuse pollution in highly monitored catchments in Western Europe. Specifically, we investigated the influences and relationships between weather processes amplified by the North Atlantic Oscillation during a sharp upward trend (2010-2016) and the patterns of diffuse nitrate and phosphorus pollution in rivers. On an annual scale, we found correlations between local catchment-scale nutrient concentrations in rivers and the influence of larger, oceanic-scale climate patterns defined by the intensity of the North Atlantic Oscillation. These influences were catchment-specific showing positive, negative or no correlation according to a typology. Upward trends in these decadal oscillations may override positive benefits of local management in some years or indicate greater benefits in other years. Developing integrated climate-chemical indicators into catchment monitoring indicators will provide a new and important contribution to water quality management objectives.

5.
Sci Total Environ ; 599-600: 1275-1287, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28531946

ABSTRACT

Diffuse transfer of nitrogen (N) and phosphorus (P) in agricultural catchments is controlled by the mobilisation of sources and their delivery to receiving waters. While plot scale experiments have focused on mobilisation processes, many catchment scale studies have hitherto concentrated on the controls of dominant flow pathways on nutrient delivery. To place mobilisation and delivery at a catchment scale, this study investigated their relative influence on contrasting nitrate-N and soluble P concentrations and N:P ratios in two shallow groundwater fed catchments with different land use (grassland and arable) on the Atlantic seaboard of Europe. Detailed datasets of N and P inputs, concentrations in shallow groundwater and concentrations in receiving streams were analysed over a five year period (October 2010-September 2015). Results showed that nitrate-N and soluble P concentrations in shallow groundwater give a good indication of stream concentrations, which suggests a dominant control of mobilisation processes on stream exports. Near-stream attenuation of nitrate-N (-30%), likely through denitrification and dilution, and enrichment in soluble P (+100%), through soil-groundwater interactions, were similar in both catchments. The soil, climate and land use controls on mobilisation were also investigated. Results showed that grassland tended to limit nitrate-N leaching as compared to arable land, but grassland could also contribute to increased P solubilisation. In the context of land use change in these groundwater fed systems, the risk of pollution swapping between N and P must be carefully considered, particularly for interactions of land use with soil chemistry and climate.

6.
Sci Total Environ ; 598: 421-431, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28448934

ABSTRACT

In agricultural landscapes, establishment of vegetated buffer zones in riparian wetlands (RWs) is promoted to decrease phosphorus (P) emissions because RWs can trap particulate P from upslope fields. However, long-term accumulation of P risks the release of dissolved P, since the unstable hydrological conditions in these zones may mobilize accumulated particulate P by transforming it into a mobile dissolved P species. This study evaluates how hydroclimate variability, topography and soil properties interact and influence this mobilization, using a three-year dataset of molybdate-reactive dissolved P (MRDP) and total dissolved P (TDP) concentrations in soil water from two RWs located in an agricultural catchment in western France (Kervidy-Naizin), along with stream P concentrations. Two main drivers of seasonal dissolved P release were identified: i) soil rewetting during water-table rise after dry periods and ii) reductive dissolution of soil Fe (hydr)oxides during prolonged water saturation periods. These mechanisms were shown to vary greatly in space (according to topography) and time (according to intra- and interannual hydroclimate variability). The concentration and speciation of the released dissolved P also varied spatially depending on soil chemistry and local topography. Comparison of sites revealed a similar correlation between soil P speciation (percentage of organic P ranging from 35-70%) and the concentration and speciation of the released P (MRDP from <0.10 to 0.40mgl-1; percentage of MRDP in TDP from 25-70%). These differences propagated to stream water, suggesting that the two RWs investigated were the main sources of dissolved P to streams. RWs can be critical areas due to their ability to biogeochemically transform the accumulated P in these zones into highly mobile and highly bioavailable dissolved P forms. Hydroclimate variability, local topography and soil chemistry must be considered to decrease the risk of remobilizing legacy soil P when establishing riparian buffer zones in agricultural landscapes.

7.
Water Res ; 84: 307-14, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26255128

ABSTRACT

Because of the high sorption affinity of phosphorus (P) for the soil solid phase, mitigation options to reduce diffuse P transfer usually focus on trapping particulate P delivered via surface flow paths. Therefore, placing riparian buffers between croplands and watercourses has been promoted worldwide, sometimes in wetland areas. To investigate the risk of P-accumulating riparian wetlands (RWs) releasing dissolved P into streams, we monitored molybdate-reactive P (MRP) in the soil pore water of two RWs in an agricultural watershed. Two main mechanisms released MRP under the control of groundwater dynamics. First, soil rewetting after the dry summer period was associated with the presence of a pool of mobile P, limited in size. Its mobilization started under water saturated conditions caused by a rise in groundwater. Second, anoxic conditions at the end of winter caused reductive dissolution of Fe (hydr)oxides along with a release of MRP. Comparison of sites revealed that the first MRP release occurred only in RWs with P-enriched soils, whereas the second was observed even in RWs with low soil P status. Seasonal variations in stream MRP concentrations were similar to concentrations in RW soils. Hence, RWs can act as a key component of the P transfer continuum in agricultural landscapes by converting particulate P from croplands into MRP transferred to streams.


Subject(s)
Groundwater/chemistry , Phosphorus/chemistry , Wetlands , Environmental Monitoring
8.
Environ Manage ; 56(5): 1184-98, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26092046

ABSTRACT

The need for better conciliation between food production and environmental protection calls for new conceptual approaches in agronomy. Ecological intensification (EI) is one of the most encouraging and successful conceptual frameworks for designing more sustainable agricultural systems, though relying upon semantic ambivalences and epistemic tensions. This article discusses abilities and limits of the EI framework in the context of strong social and environmental pressure for agricultural transition. The purpose is thus to put EI at stake in the light of the results of an interdisciplinary and participatory research project that explicitly adopted EI goals in livestock semi-industrialized farming systems. Is it possible to maintain livestock production systems that are simultaneously productive, sustainable, and viable and have low nitrate emissions in vulnerable coastal areas? If so, how do local stakeholders use these approaches? The main steps of the innovation process are described. The effects of political and social dynamics on the continuity of the transition process are analyzed, with a reflexive approach. This experiment invites one to consider that making EI operational in a context of socio-technical transition toward agroecology represents system innovation, requiring on-going dialogue, reflexivity, and long-term involvement by researchers.


Subject(s)
Agriculture/methods , Conservation of Natural Resources , Agriculture/trends , Animals , Humans , Livestock , Models, Theoretical
9.
Environ Sci Technol ; 48(2): 930-7, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24328425

ABSTRACT

Recently developed measurement technologies can monitor surface water quality almost continuously, creating high-frequency multiparameter time series and raising the question of how best to extract insights from such rich data sets. Here we use spectral analysis to characterize the variability of water quality at the AgrHys observatory (Western France) over time scales ranging from 20 min to 12 years. Three years of daily sampling at the intensively farmed Kervidy-Naizin watershed reveal universal 1/f scaling for all 36 solutes, yielding spectral slopes of 1.05 ± 0.11 (mean ± standard deviation). These 36 solute concentrations show varying degrees of annual cycling, suggesting different controls on watershed export processes. Twelve years of daily samples of SO4, NO3, and dissolved organic carbon (DOC) show that 1/f scaling does not continue at frequencies below 1/year in those constituents, whereas a 12-year daily record of Cl shows a general 1/f trend down to the lowest measurable frequencies. Conversely, approximately 12 months of 20 min NO3 and DOC measurements show that at frequencies higher than 1/day, the spectra of these solutes steepen to slopes of roughly 3, and at time scales shorter than 2-3 h, the spectra flatten to slopes near zero, reflecting analytical noise. These results confirm and extend the recent discovery of universal fractal 1/f scaling in water quality at the relatively pristine Plynlimon watershed in Wales, further demonstrating the importance of advective-dispersive transport mixing in catchments. However, the steeper scaling at subdaily time scales suggests additional short-term damping of solute concentrations, potentially due to in-stream or riparian processes.


Subject(s)
Agriculture , Elements , Fractals , Water Quality , Carbon/analysis , France , Nitrates/analysis , Spectrum Analysis , Time Factors , Water Supply
10.
Sci Total Environ ; 443: 152-62, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23183226

ABSTRACT

Many countries are developing models to estimate N emissions in rivers as part of national-scale water quality assessments. Generally, models are applied with national databases, while at the regional scale, more detailed databases are sometimes available. This paper discusses pros and cons of developing regionalized models versus applying countrywide models. A case study is used to support the discussion. The model used, called Nutting-N (NUTrient Transfer modelING-Nitrogen), relies on a statistical approach linking nitrogen sources and watershed land and river characteristics and aims to evaluate the risk of water bodies failing to reach quality objectives defined by national and federal policies. After calibration and evaluation at the national scale (France), the predictive quality of the model was compared with two regionalized models in a crystalline massif (Brittany, western France, 27,000 km(2)) and in a sedimentary basin (Seine, Paris basin, 78,000 km(2)), where detailed regional databases are available. The national-scale model provided robust predictions in most conditions encountered in France (efficiency=0.69). Terrestrial retention was related mainly to specific runoff, and its median value was estimated at 49% of the N surplus, whereas median river retention represented 18% of incoming N discharge. Regionalizing the model generally improved goodness-of-fit, as the root mean squared error was reduced by 6-24%. However, precision of parameter estimates degraded when too few monitoring basins were available or when variability in land and river characteristics was too low in the calibration dataset. Hence, regional-scale models should be advocated only after the trade-off between improvement of fit and degradation of parameter estimates is examined.


Subject(s)
Models, Theoretical , Nitrogen/analysis , Water/chemistry
11.
Sci Total Environ ; 408(23): 5657-66, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-19497610

ABSTRACT

In recent decades, temporal variations in nitrate fluxes and concentrations in temperate rivers have resulted from the interaction of anthropogenic and climatic factors. The effect of climatic drivers remains unclear, while the relative importance of the drivers seems to be highly site dependent. This paper focuses on 2-6 year variations called meso-scale variations, and analyses the climatic drivers of these variations in a study site characterized by high N inputs from intensive animal farming systems and shallow aquifers with impervious bedrock in a temperate climate. Three approaches are developed: 1) an analysis of long-term records of nitrate fluxes and nitrate concentrations in 30 coastal rivers of Western France, which were well-marked by meso-scale cycles in the fluxes and concentration with a slight hysteresis; 2) a test of the climatic control using a lumped two-box model, which demonstrates that hydrological assumptions are sufficient to explain these meso-scale cycles; and 3) a model of nitrate fluxes and concentrations in two contrasted catchments subjected to recent mitigation measures, which analyses nitrate fluxes and concentrations in relation to N stored in groundwater. In coastal rivers, hydrological drivers (i.e., effective rainfall), and particularly the dynamics of the water table and rather stable nitrate concentration, explain the meso-scale cyclic patterns. In the headwater catchment, agricultural and hydrological drivers can interact according to their settings. The requirements to better distinguish the effect of climate and human changes in integrated water management are addressed: long-term monitoring, coupling the analysis and the modelling of large sets of catchments incorporating different sizes, land uses and environmental factors.


Subject(s)
Environmental Monitoring , Nitrates/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Climate , Kinetics , Models, Chemical , Seasons , Weather
12.
Integr Environ Assess Manag ; 5(1): 158-66, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19431300

ABSTRACT

A lot of initiatives for improving water quality have been developed over the last 15 y in Brittany in response to degradation induced by intensive farming and under the pressure of European policy and environmental organizations. This has involved the partnerships of farmer organizations, organizations in charge of rural affairs, research and formation institutes, and environmental nongovernmental organizations. In this paper, we present 2 complementary aspects of an original, and possibly efficient, water policy within the framework of water management in a medium-sized watershed, including 1) development of new methods of diagnostic and decision support based on participative approaches and 2) development of new methods to assess the current status and effect of alternative scenarios, taking into account the complexity of a system with strong agricultural and hydrological variability and a relatively long response time. The 1st series of methods, which deals with the buffering capacity of landscape structures, is close to a social learning approach; the 2nd illustrates the importance, for policy makers, of a precisely defined protocol for data monitoring and analysis and of the use of spatially distributed and dynamic models when water policy is based on an obligation of results. In spite of the coexistence of all the necessary constituents of a coherent policy, it seems difficult to build. The state of current water quality illustrates the importance and limitations of incentive policy.


Subject(s)
Agriculture , Ecosystem , Water Pollutants, Chemical/chemistry , Water Supply/analysis , Time Factors , Water Movements , Water Pollution, Chemical/prevention & control
13.
Environ Manage ; 43(5): 921-35, 2009 May.
Article in English | MEDLINE | ID: mdl-19219491

ABSTRACT

While many scientific studies show the influence of agricultural landscape patterns on water cycle and water quality, only a few of these have proposed scientifically based and operational methods to improve water management. Territ'eau is a framework developed to adapt agricultural landscapes to water quality protection, using components such as farmers' fields, seminatural areas, and human infrastructures, which can act as sources, sinks, or buffers on water quality. This framework allows us to delimit active areas contributing to water quality, defined by the following three characteristics: (i) the dominant hydrological processes and their flow pathways, (ii) the characteristics of each considered pollutant, and (iii) the main landscape features. These areas are delineated by analyzing the flow connectivity from the stream to the croplands, by assessing the buffer functions of seminatural areas according to their flow pathways. Hence, this framework allows us to identify functional seminatural areas in terms of water quality and assess their limits and functions; it helps in proposing different approaches for changing agricultural landscape, acting on agricultural practices or systems, and/or conserving or rebuilding seminatural areas in controversial landscapes. Finally, it allows us to objectivize the functions of the landscape components, for adapting these components to new environmental constraints.


Subject(s)
Agriculture/methods , Models, Theoretical , Water Pollution/prevention & control , Water Supply/standards , Wetlands , Nitrates/analysis , Water Movements , Water Pollutants, Chemical/analysis
14.
Environ Manage ; 37(2): 258-70, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16273326

ABSTRACT

Valley bottom wetlands in agricultural landscapes often are neglected in national and regional wetland inventories. Although these areas are small, located in the bottomlands of the headwater catchments, and scattered in the rural landscape, they strongly influence hydrology, water quality, and biodiversity over the whole catchment area. Valley bottom wetlands often are considered as controversial wetlands. Awareness of the functional role of wetlands is increasing, in parallel with their progressive disappearance in intensive farming landscapes. The need to improve tools for controlling wetland management is a primary consideration for decision makers and land users. This article proposes a method for the inventory of valley bottom wetlands. The method is based on the functional analysis of potential, existing, and efficient valley bottom wetlands (the PEEW approach). Several indicators are proposed for checking the validity of such an approach. Potential wetlands are delineated by means of a topographic index using topographic and pedoclimatic criteria computed from a Digital Elevation Model and easily accessible databases. Existing wetlands are identified from observed surface moisture, the presence of specific wetland vegetation, or soil feature criteria. Efficient wetlands are defined through a given function, such as flow or pollutant regulation or biodiversity control. An analysis of areas at the limits between potential, existing, and efficient wetlands highlights land cultivated or drained in the past, which currently represents negotiating areas in which rehabilitation and other intended management actions can be implemented.


Subject(s)
Conservation of Natural Resources , Fresh Water , Agriculture , Geological Phenomena , Geology , Models, Theoretical , Soil , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...