Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
One Health ; 16: 100550, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37363264

ABSTRACT

Akagera National Park and its surroundings are home to tsetse flies and a number of their mammalian hosts in Rwanda. A One-health approach is being used in the control and surveillance of both animal and human trypanosomosis in Rwanda. Determination of the infection level in tsetse flies, species of trypanosomes circulating in vectors, the source of tsetse blood meal and endosymbionts is crucial in understanding the epidemiology of the disease in animals and humans in the region. Tsetse flies (n = 1101), comprising Glossina pallidipes (n = 771) and Glossina morsitans centralis (n = 330) were collected from Akagera park and surrounding areas between May 2018 and June 2019. The flies were screened for trypanosomes, vertebrate host DNA to identify sources of blood meal, and endosymbionts by PCR - High Resolution Melting analysis and amplicon sequencing. The feeding frequency and the feeding indices (selection index - W) were calculated to identify the preferred hosts. An overall trypanosome infection rate of 13.9% in the fly's Head and Proboscis (HP) and 24.3% in the Thorax and Abdomen (TA) were found. Eight trypanosome species were identified in the tsetse fly HP and TA, namely: Trypanosoma (T.) brucei brucei, T. congolense Kilifi, T. congolense savannah, T. vivax, T. simiae, T. evansi, T. godfreyi, T. grayi and T. theileri. We found no evidence of human-infective T. brucei rhodesiense. We also identified eighteen species of vertebrate hosts that tsetse flies fed on, and the most frequent one was the buffalo (Syncerus caffer) (36.5%). The frequently detected host by selection index was the rhinoceros (Diceros bicornis) (W = 16.2). Most trypanosome infections in tsetse flies were associated with the buffalo blood meal. The prevalence of tsetse endosymbionts Sodalis and Wolbachia was 2.8% and 4.8%, respectively. No Spiroplasma and Salivary Gland Hypertrophy Virus were detected. These findings implicate the buffaloes as the important reservoirs of tsetse-transmitted trypanosomes in the area. This contributes to predicting the main cryptic reservoirs and therefore guiding the effective control of the disease. The study findings provide the key scientific information that supports the current One Health collaboration in the control and surveillance of tsetse-transmitted trypanosomosis in Rwanda.

2.
Parasit Vectors ; 14(1): 294, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078446

ABSTRACT

BACKGROUND: Glossina (tsetse flies) biologically transmit trypanosomes that infect both humans and animals. Knowledge of their distribution patterns is a key element to better understand the transmission dynamics of trypanosomosis. Tsetse distribution in Rwanda has not been well enough documented, and little is known on their current distribution. This study determined the current spatial distribution, abundance, diversity, and seasonal variations of tsetse flies in and around the Akagera National Park. METHODS: A longitudinal stratified sampling following the seasons was used. Biconical traps were deployed in 55 sites for 6 consecutive days of each study month from May 2018 to June 2019 and emptied every 48 h. Flies were identified using FAO keys, and the number of flies per trap day (FTD) was used to determine the apparent density. Pearson chi-square (χ2) and parametrical tests (t-test and ANOVA) were used to determine the variations between the variables. The significance (p < 0.05) at 95% confidence interval was considered. Logistic regression was used to determine the association between tsetse occurrence and the associated predictors. RESULTS: A total of 39,516 tsetse flies were collected, of which 73.4 and 26.6% were from inside Akagera NP and the interface area, respectively. Female flies accounted for 61.3 while 38.7% were males. Two species were identified, i.e. G. pallidipes [n = 29,121, 7.4 flies/trap/day (FTD)] and G. morsitans centralis (n = 10,395; 2.6 FTD). The statistical difference in numbers was significant between the two species (p = 0.000). The flies were more abundant during the wet season (15.8 FTD) than the dry season (4.2 FTD). Large numbers of flies were trapped around the swamp areas (69.1 FTD) inside the park and in Nyagatare District (11.2 FTD) at the interface. Glossina morsitans was 0.218 times less likely to occur outside the park. The chance of co-existing between the two species reduced outside the protected area (0.021 times). CONCLUSIONS: The occurrence of Glossina seems to be limited to the protected Akagera NP and a narrow band of its surrounding areas. This finding will be crucial to design appropriate control strategies. Glossina pallidipes was found in higher numbers and therefore is conceivably the most important vector of trypanosomosis. Regional coordinated control and regular monitoring of Glossina distribution are recommended.


Subject(s)
Animal Distribution , Animals, Wild/parasitology , Livestock/parasitology , Parks, Recreational , Tsetse Flies/physiology , Animals , Cattle , Female , Insect Vectors/parasitology , Longitudinal Studies , Male , Rwanda , Seasons , Trypanosomiasis, Bovine/epidemiology , Trypanosomiasis, Bovine/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...