Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 4(7): 1206-1216, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32215656

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) significantly reduces the rate of relapse in acute myeloid leukemia (AML) but comes at the cost of significant treatment-related mortality. Despite the reduction in relapse overall, it remains common, especially in high-risk groups. The outcomes for patients who relapse after transplant remains very poor. A large proportion of the morbidity that prevents most patients from accessing allo-HSCT is due to toxic nonspecific conditioning agents that are required to remove recipient hematopoietic stem and progenitor cells (HSPCs), allowing for successful donor engraftment. CD300f is expressed evenly across HSPC subtypes. CD300f has transcription and protein expression equivalent to CD33 on AML. We have developed an anti-CD300f antibody that efficiently internalizes into target cells. We have generated a highly potent anti-CD300f antibody-drug conjugate (ADC) with a pyrrolobenzodiazepine warhead that selectively depletes AML cell lines and colony forming units in vitro. The ADC synergizes with fludarabine, making it a natural combination to use in a minimal toxicity conditioning regimen. Our ADC prolongs the survival of mice engrafted with human cell lines and depletes primary human AML engrafted with a single injection. In a humanized mouse model, a single injection of the ADC depletes CD34+ HSPCs and CD34+CD38-CD90+ hematopoietic stem cells. This work establishes an anti-CD300f ADC as an attractive potential therapeutic that, if validated in transplant models using a larger cohort of primary AML samples, will reduce relapse rate and toxicity for patients with AML undergoing allo-HSCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Animals , Humans , Leukemia, Myeloid, Acute/therapy , Mice , Retrospective Studies , Transplantation Conditioning , Transplantation, Homologous
2.
J Clin Med ; 9(2)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085578

ABSTRACT

From monoclonal antibodies (mAbs) to Chimeric Antigen Receptor (CAR) T cells, immunotherapies have enhanced the efficacy of treatments against B cell malignancies. The same has not been true for Acute Myeloid Leukemia (AML). Hematologic toxicity has limited the potential of modern immunotherapies for AML at preclinical and clinical levels. Gemtuzumab Ozogamicin has demonstrated hematologic toxicity, but the challenge of preserving normal hematopoiesis has become more apparent with the development of increasingly potent immunotherapies. To date, no single surface molecule has been identified that is able to differentiate AML from Hematopoietic Stem and Progenitor Cells (HSPC). Attempts have been made to spare hematopoiesis by targeting molecules expressed only on later myeloid progenitors as well as AML or using toxins that selectively kill AML over HSPC. Other strategies include targeting aberrantly expressed lymphoid molecules or only targeting monocyte-associated proteins in AML with monocytic differentiation. Recently, some groups have accepted that stem cell transplantation is required to access potent AML immunotherapy and envision it as a rescue to avoid severe hematologic toxicity. Whether it will ever be possible to differentiate AML from HSPC using surface molecules is unclear. Unless true specific AML surface targets are discovered, stem cell transplantation could be required to harness the true potential of immunotherapy in AML.

3.
Mol Oncol ; 13(10): 2107-2120, 2019 10.
Article in English | MEDLINE | ID: mdl-31338922

ABSTRACT

Antibody-based therapy in acute myeloid leukemia (AML) has been marred by significant hematologic toxicity due to targeting of both hematopoietic stem and progenitor cells (HSPCs). Achieving greater success with therapeutic antibodies requires careful characterization of the potential target molecules on AML. One potential target is CD300f, which is an immunoregulatory molecule expressed predominantly on myeloid lineage cells. To confirm the value of CD300f as a leukemic target, we showed that CD300f antibodies bind to AML from 85% of patient samples. While one CD300f monoclonal antibody (mAb) reportedly did not bind healthy hematopoietic stem cells, transcriptomic analysis found that CD300f transcripts are expressed by healthy HSPC. Several CD300f protein isoforms exist as a result of alternative splicing. Importantly for antibody targeting, the extracellular region of CD300f can be present with or without the exon 4-encoded sequence. This results in CD300f isoforms that are differentially bound by CD300f-specific antibodies. Furthermore, binding of one mAb, DCR-2, to CD300f exposes a structural epitope recognized by a second CD300f mAb, UP-D2. Detailed analysis of publicly available transcriptomic data indicated that CD34+ HSPC expressed fewer CD300f transcripts that lacked exon 4 compared to AML with monocytic differentiation. Analysis of a small cohort of AML cells revealed that the UP-D2 conformational binding site could be induced in cells from AML patients with monocytic differentiation but not those from other AML or HSPC. This provides the opportunity to develop an antibody-based strategy to target AMLs with monocytic differentiation but not healthy CD34+ HSPCs. This would be a major step forward in developing effective anti-AML therapeutic antibodies with reduced hematologic toxicity.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Epitopes/immunology , Leukemia, Myeloid, Acute/drug therapy , Receptors, Immunologic/immunology , Cell Line, Tumor , Humans , Leukemia, Myeloid, Acute/immunology , Molecular Targeted Therapy , Monocytes/drug effects , Monocytes/immunology , Receptors, Immunologic/antagonists & inhibitors
4.
PLoS One ; 14(5): e0216368, 2019.
Article in English | MEDLINE | ID: mdl-31075107

ABSTRACT

Acute myeloid leukemia (AML) is the most common form of adult acute leukemia with ~20,000 new cases yearly. The disease develops in people of all ages, but is more prominent in the elderly, who due to limited treatment options, have poor overall survival rates. Monoclonal antibodies (mAb) targeting specific cell surface molecules have proven to be safe and effective in different haematological malignancies. However, AML target molecules are currently limited so discovery of new targets would be highly beneficial to patients. We examined the C-type lectin receptor CD302 as a potential therapeutic target for AML due to its selective expression in myeloid immune populations. In a cohort of 33 AML patients with varied morphological and karyotypic classifications, 88% were found to express CD302 on the surface of blasts and 80% on the surface of CD34+ CD38- population enriched with leukemic stem cells. A mAb targeting human CD302 was effective in mediating antibody dependent cell cytotoxicity and was internalised, making it amenable to toxin conjugation. Targeting CD302 with antibody limited in vivo engraftment of the leukemic cell line HL-60 in NOD/SCID mice. While CD302 was expressed in a hepatic cell line, HepG2, this molecule was not detected on the surface of HepG2, nor could HepG2 be killed using a CD302 antibody-drug conjugate. Expression was however found on the surface of haematopoietic stem cells suggesting that targeting CD302 would be most effective prior to haematopoietic transplantation. These studies provide the foundation for examining CD302 as a potential therapeutic target for AML.


Subject(s)
Antigens, Neoplasm/metabolism , Antineoplastic Agents, Immunological/pharmacology , Blast Crisis , Drug Delivery Systems , Lectins, C-Type/metabolism , Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Receptors, Cell Surface/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Blast Crisis/drug therapy , Blast Crisis/metabolism , Blast Crisis/pathology , Female , HL-60 Cells , Hematopoietic Stem Cell Transplantation , Hep G2 Cells , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Xenograft Model Antitumor Assays
5.
Oncoimmunology ; 7(4): e1419114, 2018.
Article in English | MEDLINE | ID: mdl-29632738

ABSTRACT

Only modest advances in AML therapy have occurred in the past decade and relapse due to residual disease remains the major challenge. The potential of the immune system to address this is evident in the success of allogeneic transplantation, however this leads to considerable morbidity. Dendritic cell (DC) vaccination can generate leukemia-specific autologous immunity with little toxicity. Promising results have been achieved with vaccines developed in vitro from purified monocytes (Mo-DC). We now demonstrate that blood DC (BDC) have superior function to Mo-DC. Whilst BDC are reduced at diagnosis in AML, they recover following chemotherapy and allogeneic transplantation, can be purified using CMRF-56 antibody technology, and can stimulate functional T cell responses. While most AML patients in remission had a relatively normal T cell landscape, those who had received fludarabine as salvage therapy have persistent T cell abnormalities including reduced number, altered subset distribution, failure to expand, and increased activation-induced cell death. Furthermore, PD-1 and TIM-3 are increased on CD4T cells in AML patients in remission and their blockade enhances the expansion of leukemia-specific T cells. This confirms the feasibility of a BDC vaccine to consolidate remission in AML and suggests it should be tested in conjunction with checkpoint blockade.

6.
Br J Haematol ; 164(4): 481-95, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24321020

ABSTRACT

Novel therapies with increased efficacy and decreased toxicity are desperately needed for the treatment of acute myeloid leukaemia (AML). The anti CD33 immunoconjugate, gemtuzumab ozogamicin (GO), was withdrawn with concerns over induction mortality and lack of efficacy. However a number of recent trials suggest that, particularly in AML with favourable cytogenetics, GO may improve overall survival. This data and the development of alternative novel monoclonal antibodies (mAb) have renewed interest in the area. Leukaemic stem cells (LSC) are identified as the subset of AML blasts that reproduces the leukaemic phenotype upon transplantation into immunosuppressed mice. AML relapse may be caused by chemoresistant LSC and this has refocused interest on identifying and targeting antigens specific for LSC. Several mAb have been developed that target LSC effectively in xenogeneic models but only a few have begun clinical evaluation. Antibody engineering may improve the activity of potential new therapeutics for AML. The encouraging results seen with bispecific T cell-engaging mAb-based molecules against CD19 in the treatment of B-cell acute lymphobalstic leukaemia, highlight the potential efficacy of engineered antibodies in the treatment of acute leukaemia. Potent engineered mAb, possibly targeting novel LSC antigens, offer hope for improving the current poor prognosis for AML.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/radiotherapy
7.
Immunol Lett ; 149(1-2): 93-100, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23072861

ABSTRACT

Dendritic cells (DC) are a heterogeneous population of leucocytes which play a key role in initiating and modulating immune responses. The human CD300 family consists of six immunoregulatory leucocyte membrane molecules that regulate cellular activity including differentiation, viability, cytokine and chemokine secretion, phagocytosis and chemotaxis. Recent work has identified polar lipids as probable ligands for these molecules in keeping with the known evolutionary conservation of this family. CD300 molecules are all expressed by DC; CD300b, d, e and f are restricted to different subpopulations of the myeloid DC lineage. They have been shown to regulate DC function both in vitro and in vivo. In addition DC are able to regulate their CD300 expression in an autocrine manner. The potential to form different CD300 heterodimers adds further complexity to their role in fine tuning DC function. Expression of CD300 molecules is altered in a number of diseases including many where DC are implicated in the pathogenesis. CD300 antibodies have been demonstrated to have significant therapeutic effect in animal models. The mechanisms underlying the immunoregulatory effects of the CD300 family are complex. Deciphering their physiology will allow effective targeting of these molecules as novel therapies in a wide variety of inflammatory diseases.


Subject(s)
Dendritic Cells/immunology , Protein Multimerization/immunology , Receptors, Immunologic/immunology , Autocrine Communication/immunology , Dendritic Cells/metabolism , Dendritic Cells/pathology , Gene Expression Regulation/immunology , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Myeloid Cells/pathology , Receptors, Immunologic/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...