Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38473578

ABSTRACT

The nondestructive determination of the neutron-irradiation-induced embrittlement of nuclear reactor pressure-vessel steel is a very important and recent problem. Within the scope of the so-called NOMAD project funded by the Euratom research and training program, novel nondestructive electromagnetic testing and evaluation (NDE) methods were applied to the inspection of irradiated reactor pressure-vessel steel. In this review, the most important results of this project are summarized. Different methods were used and compared with each other. The measurement results were compared with the destructively determined ductile-to-brittle transition temperature (DBTT) values. Three magnetic methods, 3MA (micromagnetic, multiparameter, microstructure and stress analysis), MAT (magnetic adaptive testing), and Barkhausen noise technique (MBN), were found to be the most promising techniques. The results of these methods were in good agreement with each other. A good correlation was found between the magnetic parameters and the DBTT values. The basic idea of the NOMAD project is to use a multi-method/multi-parameter approach and to focus on the synergies that allow us to recognize the side effects, therefore suppressing them at the same time. Different types of machine-learning (ML) algorithms were tested in a competitive manner, and their performances were evaluated. The important outcome of the ML technique is that not only one but several different ML techniques could reach the required precision and reliability, i.e., keeping the DBTT prediction error lower than a ±25 °C threshold, which was previously not possible for any of the NDE methods as single entities. A calibration/training procedure was carried out on the merged outcome of the testing methods with excellent results to predict the transition temperature, yield strength, and mechanical hardness for all investigated materials. Our results, achieved within the NOMAD project, can be useful for the future potential introduction of this (and, in general, any) nondestructive evolution method.

2.
Materials (Basel) ; 15(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35207966

ABSTRACT

The wall, made of ferromagnetic steel, of a nuclear reactor pressure vessel is covered by an austenitic (very weakly ferromagnetic) cladding. In this work, we investigated how the base material and the cladding can be inspected separately from each other by nondestructive magnetic measurements. It was found that with the proper choice of the magnetizing yoke, these two different materials could be measured independently of each other. The effect of the yoke's size was studied by the numerical simulation of magnetic flux, pumped into the material during magnetic measurements. Measurements were performed by two different sizes of yokes on pure base material, on base material under cladding and on cladding itself. Experiments verified the results of the simulation. Our results can help for the future practical application of magnetic methods in the regular inspection of nuclear power plants.

3.
Materials (Basel) ; 14(18)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34576479

ABSTRACT

Nondestructive magnetic measurement methods can be successfully applied to determine the embrittlement of nuclear pressure vessel steel caused by neutron irradiation. It was found in previous works that reasonable correlation could be obtained between the nondestructively measured magnetic parameters and destructively determined ductile-to-brittle transition temperature. However, a large scatter of the measurement points was detected even in the cases of the non-irradiated reference samples. The reason for their scattering was attributed to the local inhomogeneity of material. This conclusion is verified in the present work by applying three different magnetic methods on two sets of Charpy samples made of two different reactor steel materials. It was found that by an optimal magnetic pre-selection of samples, a good, linear correlation can be found between magnetic parameters as well as the ductile-to-brittle transition temperature with low scattering of points. This result shows that neutron irradiation embrittlement depends very much on the local material properties.

4.
Materials (Basel) ; 12(6)2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30909460

ABSTRACT

Degradation of nuclear pressure vessel steel materials, 15Kh2NMFA type and A508 Cl2 type (definition is given in the text) were investigated by a novel magnetic nondestructive testing method, so-called Magnetic Adaptive Testing (MAT), which is based on systematic measurement and evaluation of minor magnetic hysteresis loops. The measured samples were thermally treated by a special step cooling procedure, which generated structural changes in the material. It was found that this type of degradation can be easily followed by magnetic measurements. Charpy impact test were also performed and the results were compared with the magnetic parameters. In case of 15Kh2NMFA steel, a good, reliable and closely linear correlation was found between magnetic descriptors and transition temperature.

5.
Bioelectromagnetics ; 28(8): 615-27, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17654477

ABSTRACT

The present study deals with the analgesic effect induced by static magnetic fields (SMF) in mice exposed to the field with their whole body. It discusses how the effect depends on the distribution of the magnetic field, that is, on the specification and arrangement of the applied individual permanent magnets. A critical analysis of different magnet arrangements is given. As a result the authors propose a magnet arrangement recipe that achieves an analgesic effect of over 80% in the writhing test. This is a widely accepted screening method for animal pain and predictor of human experimental results. As a non-drug, non-invasive, non-contact, non-pain, non-addictive method for analgesia with immediate and long-lasting effect based on the stimulus of the endogenous opioid network, the SMF treatment may attract the attention of medical doctors, nurses, magnet therapists, veterinarians, physiotherapists, masseurs, and fitness trainers among others.


Subject(s)
Electric Stimulation Therapy/methods , Magnetics/therapeutic use , Pain Management , Pain Measurement/radiation effects , Pain/physiopathology , Whole-Body Irradiation/methods , Animals , Male , Mice , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...