Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 274: 116482, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33516126

ABSTRACT

A comprehensive characterization was performed to investigate the composition and mineralogy of soils from a gold mining region and their correlation with arsenic (As) total concentration and its bioaccessible fraction. The arsenic bioaccessible (BAC) fraction was determined through in vitro test and calculated as the ratio between the amounts of As released and the total As concentration in the soil sample. Among the minor constituents of environmental concern, only arsenic is significantly higher (median of 748.0 mg kg-1) than the national guidelines (agricultural, 35 mg kg-1 and residential, 55 mg kg-1). All the other trace elements showed concentrations below the investigation values established for residential areas. The mean bioaccessible As was 7.0 mg kg-1, with a median value of 4.4 mg kg-1, and a median As BAC percentage of 0.7%. The Brunauer-Emmett-Teller (BET) surface area showed a consistent increase with the increase of the acid-soluble Al content in the soil samples. The distribution of As in the soil samples is not correlated with the abundance of As-minerals and the fraction of adsorbed As. Arsenic was shown to be trapped in oriented aggregates of crystalline (Al-)Fe-(hydr)oxides nanoparticles (the main metalloid reservoirs), as demonstrated by scanning and transmission electron microscopy analyses. This unique pattern supports the significant difference between total As concentration and the bioaccessible amount. There was a positive correlation between soluble Al (within the Fe-(hydr)oxides phases and minor gibbsite) and As concentration in the soil samples, and a negative correlation with bioaccessible As. Therefore, although Al in the soil is associated with high As levels, it also makes the metalloid less bioaccessible. The risk to human health from As exposure to these soils is low.


Subject(s)
Arsenic , Soil Pollutants , Aluminum , Arsenic/analysis , Humans , Mining , Soil , Soil Pollutants/analysis
2.
Sci Total Environ ; 689: 1244-1254, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31466163

ABSTRACT

Bioaccessibility (BAC) of fine surface dust (FSD, particle size ≤10 µm) and surface dust samples (particle size ≤250 µm) collected from a gold mining district was used as a tool to determine the portion of arsenic that would be available via simulated lung and gastrointestinal (G.I) fluids. BAC was considered low for both tests (lung 2.7 ±â€¯1%, n = 5 and G.I 3.4 ±â€¯2%, n = 14 for residential surface dust samples). An analytical procedure was developed to further identify arsenic-bearing phases found in FSD samples and analyze the main components that regulate arsenic solubility. Up to five different arsenic-bearing phases were identified among a total of 35 minerals surveyed by scanning electron microscopy-based automated image analysis (Mineral Liberation Analyzer - MLA). Arsenic-bearing Fe oxy-hydroxides and mixed phases comprised the main arsenic phases encountered in FSD samples, thus likely being responsible for regulating arsenic bioaccessibility. Transmission electron microscopy showed that the mixed phases comprised a mix of oriented nanostructure aggregates formed by hematite and goethite entangled with phyllosilicates. The main As-bearing phases identified in FSD samples are similar to those reported in soil samples in the same region. The predominant arsenic-bearing phase encountered in the ore was arsenopyrite, mostly in large particles (>10 µm in size), and therefore unlikely to be found in residential dust. Arsenic intake from both inhalation and ingestion were minimal when compared to total arsenic intake (considering food and water ingestion), which itself was <7% of the value established by the Food and Agriculture Organization of the United Nations Benchmark Dose Lower Confidence Limit (BMDL0.5) of 3.0 µg per kg-1 body weight per day. These results indicated that the relative risks associated with arsenic exposure by inhalation and oral ingestion in this region are low.


Subject(s)
Arsenic/analysis , Environmental Exposure/analysis , Soil Pollutants/analysis , Dust/analysis , Environmental Exposure/statistics & numerical data , Mining
3.
Sci Total Environ ; 673: 36-43, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-30981922

ABSTRACT

This study assessed various exposure pathways of arsenic and their health risk apportionment to the residents of Paracatu, a gold mining town in Brazil. We measured arsenic concentrations in 50 groundwater and surface town water samples from nearby residences, 38 surface soil dust from residential/commercial dwellings and roadside of Paracatu, and 600 airborne dust samples including PM10 and total suspended particulates (TSP), in additional to a previous reported food survey containing 90 samples from 15 major food categories. For the surface soil dust, bioaccessibility of arsenic as a surrogate of bioavailability was determined using an in vitro physiologically based extraction test (PBET). Rice and bean were found to contain the highest levels of arsenic in which the arsenic speciation was measured whereas the percentages of inorganic arsenic of other food items were taken from the literature for the risk apportionment calculation. The results show that the contribution of inhaled arsenic is ≤3% of the total daily intake, even assuming 100% BAC. The average bioaccessibility of arsenic in the surface soil dust was 3.4 ±â€¯2.0% (n = 17) with a bioaccessible concentration of 4.1 ±â€¯3.7 mg/kg. Food was the main contributor of the daily total intake of arsenic with rice and beans being the most significant ones. The total arsenic intake (ingestion + inhalation) is about 10% of the JECFA BMDL0.5 of 3 µg/kg b.w. per day, and the combined risk based on the cancer slope calculation is similar to the arsenic intake from the consumption of 2 L of water containing 10 µg/L of arsenic, a maximum concentration recommended by WHO. The holistic approach by addressing multiple pathways of exposure is considered a useful tool for health risk assessment throughout the life of mine including mine closure, and can be applied at legacy sites.


Subject(s)
Arsenic/analysis , Environmental Exposure/analysis , Soil Pollutants/analysis , Brazil , Environmental Exposure/statistics & numerical data , Environmental Monitoring , Humans , Mining , Risk Assessment
4.
Environ Sci Pollut Res Int ; 25(19): 18813-18822, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29713978

ABSTRACT

Use of lime to mitigate acid mine drainage is, in general, accompanied by precipitation of iron (Fe) and aluminium (Al) (hydr)oxides which may increase the removal of trace elements from water. This work aimed to evaluate the precipitation of Fe/Al (hydr)oxides to remove rare earth elements (REE) from contaminated water and the stability of precipitates. Two sets of 60-day syntheses were carried out using different Fe/Al/REE molar ratios, for europium (Eu) and holmium (Ho). The pH was periodically adjusted to 9.0, and the stability of the resulting precipitates was evaluated by water-soluble and BCR extractable phases, namely (1) acid soluble, extracted by 0.11 mol L-1 acetic acid; (2) reducible, extracted with 0.5 mol L-1 hydroxylamine hydrochloride; and (3) oxidisable, extracted with 8.8 mol L-1 hydrogen peroxide efficiencies of the water treatments for both Eu and Ho that were higher than 99.9% irrespective to the Fe/Al/REE molar ratios. Water-soluble phases of Eu and Ho were lower than 0.01% of the total contents in the precipitates. Recoveries from precipitates by Bureau Communautaire de Référence (BCR) sequential extractions increased with increasing concentrations of Eu and Ho. Acetic acid extracted higher amounts of REE, but Eu recovery was superior to Ho. Lepidocrocite was formed as Eu concentration increased which decreased its stability in the precipitates.


Subject(s)
Aluminum Oxide/chemistry , Europium/isolation & purification , Ferric Compounds/chemistry , Holmium/isolation & purification , Mining , Water Pollutants, Chemical/isolation & purification , Acids , Calcium Compounds , Iron , Oxidation-Reduction , Oxides , Water Pollutants, Chemical/analysis , Water Purification
5.
J Hazard Mater ; 353: 261-270, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29677528

ABSTRACT

A new analytical protocol was developed to provide quantitative, single-particle identification of arsenic in heterogeneous nanoscale mineral phases in soil samples, with a view to establishing its potential risk to human health. Microscopic techniques enabled quantitative, single-particle identification of As-bearing phases in twenty soil samples collected in a gold mining district with arsenic concentrations in range of 8 to 6354 mg kg-1. Arsenic is primarily observed in association with iron (hydr) oxides in fine intergrowth with phyllosilicates. Only small quantities of arsenopyrite and ferric arsenate (likely scorodite) particles, common in the local gold mineralization, were identified (e.g., 7 and 9 out, respectively, of app. 74,000 particles analyzed). Within the high-arsenic subgroup, the arsenic concentrations in the particle size fraction below 250µm ranges from 211 to 4304 mg kg-1. The bioaccessible arsenic in the same size fraction is within 0.86-22 mg kg-1 (0.3-5.0%). Arsenic is trapped in oriented aggregates of crystalline iron (hydr)oxides nanoparticles, and this mechanism accounts for the low As bioaccessibility. The calculated As exposure from soil ingestion is less than 10% of the arsenic Benchmark Dose Lower Limit - BMDL0.5. Therefore, the health risk associated with the ingestion of this geogenic material is considered to be low.


Subject(s)
Arsenic/analysis , Iron/chemistry , Nanostructures/chemistry , Oxides/chemistry , Soil Pollutants/analysis , Adult , Arsenic/chemistry , Biological Availability , Child , Dietary Exposure/analysis , Humans , Risk Assessment , Soil Pollutants/chemistry
6.
J Environ Manage ; 202(Pt 1): 137-150, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28732276

ABSTRACT

To better understand the potential environmental and human health impacts of fine airborne particulate matter (APM), detailed physical and chemical characterisation is required. The only means to accurately distinguish between the multiple compositions in APM is by single particle analysis. A variety of methods and instruments are available, which range from filter-based sample collection for off-line laboratory analysis to on-line instruments that detect the airborne particles and generate size distribution and chemical data in real time. There are many reasons for sampling particulates in the ambient atmosphere and as a consequence, different measurement strategies and sampling devices are used depending on the scientific objectives and subsequent analytical techniques. This review is designed as a guide to some of the techniques available for the sampling and subsequent chemical analysis of individual inorganic particles.


Subject(s)
Air Pollutants , Environmental Monitoring , Atmosphere , Humans , Particle Size , Particulate Matter
7.
Chemosphere ; 168: 996-1003, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27836272

ABSTRACT

The human health risk associated with arsenic in food in Southeast Brazil was quantified. Based on the most commonly consumed food types in the Brazilian diet, the maximum inorganic As (iAs) daily intake from food (0.255 µg kg-1 body weight per day) is approximately 9% of the Benchmark Dose Lower Limit (BMDL0.5) of 3 µg kg-1 body weight per day set by the World Health Organization (WHO) and Food and Agriculture Organization (FAO) Joint Expert Committee in Food Additives (JECFA). When water is included, the contribution of food to the total intake varies from 96.9% to 39.7%. Rice and beans, the main Brazilian staple food, contribute between 67 and 90% of the total As intake from food (46-79% from rice and 11-23% from beans). The substantial contribution of beans to total As food intake is reported for the first time. The broad range of As concentrations in rice and beans highlights the variable and potentially large contribution of both to As food intake in places where diet consists largely of these two food categories.


Subject(s)
Arsenic/analysis , Environmental Exposure/analysis , Food Contamination/analysis , Oryza/chemistry , Phaseolus/chemistry , Agriculture , Brazil , Diet , Humans
8.
Chemosphere ; 158: 91-9, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27258899

ABSTRACT

The nature of As-Al-Fe co-precipitates aged for 120 days are investigated in detail by High Resolution Transmission Electron Microscopy (HRTEM), Scanning TEM (STEM), electron diffraction, Energy Dispersive X-Ray Spectroscopy (EDS), Electron Energy-Loss Spectroscopy (EELS), and Energy Filtered Transmission Electron Microscopy (EFTEM). The Al present in magnetite is shown to favour As incorporation (up to 1.10 wt%) relative to Al-free magnetite and Al-goethite, but As uptake by Al-magnetite decreases with increasing Al substitution (3.53-11.37 mol% Al). Arsenic-bearing magnetite and goethite mesocrystals (MCs) are formed by oriented aggregation (OA) of primary nanoparticles (NPs). Well-crystalline magnetite likely formed by Otswald ripening was predominant in the Al-free system. The As content in Al-goethite MCs (having approximately 13% substituted Al) was close to the EDS detection limit (0.1 wt% As), but was below detection in Al-goethites with 23.00-32.19 mol% Al. Our results show for the first time the capacity of Al-magnetite to incorporate more As than Al-free magnetite, and the role of Al in favouring OA-based crystal growth under the experimental conditions, and therefore As retention in the formed MCs. The proposed mechanism of As incorporation involves adsorption of As onto the newly formed NPs. Arsenic is then trapped in the MCs as they grow by self-assembly OA upon attachment of the NPs. We conclude that Al may diffuse to the crystal faces with high surface energy to reduce the total energy of the system during the attachment events, thus favouring the oriented aggregation.


Subject(s)
Aluminum/chemistry , Arsenic/isolation & purification , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Nanotechnology/methods , Adsorption , Arsenic/chemistry , Crystallization , Environmental Restoration and Remediation , Ferrosoferric Oxide/chemistry , Iron Compounds/chemistry , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning Transmission , Microscopy, Electron, Transmission , Minerals/chemistry , Spectroscopy, Electron Energy-Loss
9.
Chemosphere ; 138: 340-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26126189

ABSTRACT

Iron (hydr)oxides are known to play a major role in arsenic fixation in the environment. The mechanisms for long-term fixation into their crystal structure, however, remain poorly understood, especially arsenic partitioning behavior during transformation from amorphous to crystalline phases under natural conditions. In this study, these mechanisms are investigated in Fe-Al-oxisols exposed over a period of 10 years to a sulfide concentrate in tailings impoundments. The spatial resolution necessary to investigate the markedly heterogeneous nanoscale phases found in the oxisols was achieved by combining three different, high resolution electron microscopy techniques - Nano-Beam Electron Diffraction (NBD), Electron Energy-Loss Spectroscopy (EELS), and High Resolution Transmission Electron Microscopy (HRTEM). Arsenic (1.6±0.5 wt.%) was unambiguously and precisely identified in mesocrystals of Al-hematite with an As/Fe atomic ratio of 0.026±0.006. The increase in the c-axis (c=1.379±0.009 nm) compared to standard hematite (c=1.372 nm) is consistent with the presence of arsenic in the Al-hematite structure. The As-bearing Al-hematite is interpreted as a secondary phase formed from oxyhydroxides, such as ferrihydrite, during the long-term exposure to the sulfide tailings. The proposed mechanism of arsenic fixation in the Al-hematite structure involves adsorption onto Al-ferrihydrite nanoparticles, followed by Al-ferrihydrite aggregation by self-assembly oriented attachment and coalescence that ultimately produces Al-hematite mesocrystals. Our results illustrate for the first time the process of formation of stable arsenic bearing Al-hematite for the long-term immobilization of arsenic in environmental samples.


Subject(s)
Arsenic/isolation & purification , Environmental Pollutants/isolation & purification , Ferric Compounds/chemistry , Nanostructures/chemistry , Adsorption , Arsenic/chemistry , Crystallization , Environmental Pollutants/chemistry , Environmental Restoration and Remediation , Microscopy, Electron, Transmission , Models, Chemical , Phase Transition , Spectroscopy, Electron Energy-Loss , Surface Properties
10.
Mar Pollut Bull ; 89(1-2): 435-443, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25457811

ABSTRACT

Trace element concentrations in surface intertidal sediments were analyzed to assess the level of contamination along the western side of Moreton Bay (Australia). The environmental risks posed by metals were evaluated using sediment quality guidelines, the Risk Assessment Code (RAC) and enrichment relative to background levels. Chromium, Ni, and Cu are the main contributors to sediment pollution. Sediments are also enriched in Zn, Cd and Pb by 1.5-3 times the regional background. Zinc, Cd and Co may pose high to very high risk to the aquatic biota due to their potential bioavailability, while Ni, As, Cu, Pb and Cr may pose medium risk at some of the investigated sites. Results emphasize the importance of using different methods for the assessment of sediment pollution at an estuarine site.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Metals/analysis , Water Pollutants, Chemical/analysis , Aquatic Organisms/drug effects , Bays/analysis , Estuaries , Metals/toxicity , Queensland , Risk Assessment , Water Pollutants, Chemical/toxicity
11.
Environ Sci Pollut Res Int ; 20(12): 8404-16, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24122159

ABSTRACT

Lead from historical mining and mineral processing activities may pose potential human health risks if materials with high concentrations of bioavailable lead minerals are released to the environment. Since the Joint Expert Committee on Food Additives of Food and Agriculture Organization/World Health Organization withdrew the Provisional Tolerable Weekly Intake of lead in 2011, an alternative method was required for lead exposure assessment. This study evaluated the potential lead hazard to young children (0-7 years) from a historical mining location at a semi-arid area using the U.S. EPA Integrated Exposure Uptake Biokinetic (IEUBK) Model, with selected site-specific input data. This study assessed lead exposure via the inhalation pathway for children living in a location affected by lead mining activities and with specific reference to semi-arid conditions and made comparison with the ingestion pathway by using the physiologically based extraction test for gastro-intestinal simulation. Sensitivity analysis for major IEUBK input parameters was conducted. Three groups of input parameters were classified according to the results of predicted blood concentrations. The modelled lead absorption attributed to the inhalation route was lower than 2 % (mean ± SE, 0.9 % ± 0.1 %) of all lead intake routes and was demonstrated as a less significant exposure pathway to children's blood, compared with ingestion. Whilst dermal exposure was negligible, diet and ingestion of soil and dust were the dominant parameters in terms of children's blood lead prediction. The exposure assessment identified the changing role of dietary intake when house lead loadings varied. Recommendations were also made to conduct comprehensive site-specific human health risk assessment in future studies of lead exposure under a semi-arid climate.


Subject(s)
Environmental Exposure/analysis , Environmental Pollutants/analysis , Lead/analysis , Mining , Australia , Child , Child, Preschool , Diet/statistics & numerical data , Dust/analysis , Environmental Exposure/statistics & numerical data , Environmental Pollutants/metabolism , Humans , Infant , Infant, Newborn , Lead/metabolism , Models, Chemical , Particulate Matter/analysis , Risk Assessment , Soil/chemistry
12.
Isotopes Environ Health Stud ; 49(2): 163-79, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23458189

ABSTRACT

The aim of this study was to determine the radon concentrations in the water supplies of a residential area of central west Anatolia, Turkey. This research provides a preliminary risk assessment for inhabitants in the study area which can be applied for other regions. In 14 out of the 19 water supplies analysed, radon concentrations exceeded the maximum contaminant level (11.1 Bq l(-1)). The total annual effective doses of 10 for the wet season and 14 for the dry season out of the 19 water supplies are greater than the values recommended by EPA [Cancer Risk Coefficients for Environmental Exposure to Radionuclides, Federal Guidance Report No. 13 (US Environmental Protection Agency, Washington, DC, 1999) < http://www.epa.gov/rpdweb00/docs/federal/402-r-99-001.pdf >] (0.1 mSv a(-1)). The elevated radon concentrations in water resources are most probably linked with geological origin which contains significant amounts of radioactive minerals.


Subject(s)
Groundwater/chemistry , Radiation Monitoring , Radon/analysis , Water Pollutants, Radioactive/analysis , Background Radiation , Drinking Water/chemistry , Drinking Water/standards , Geographic Mapping , Groundwater/standards , Risk Assessment , Seasons , Turkey , Water Quality , Water Resources/standards , Water Supply/standards
13.
Oecologia ; 172(2): 485-94, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23070143

ABSTRACT

Water availability is a key determinant of the zonation patterns in estuarine vegetation, but water availability and the use of different water sources over space and time are not well understood. We have determined the seasonal water use patterns of riparian vegetation over an estuarine ecotone. Our aim was to investigate how the water use patterns of estuarine vegetation respond to variations in the availability of tidal creek water and rain-derived freshwater. The levels of natural stable isotopes of oxygen and hydrogen were assessed in the stem of the mangrove Avicennia marina (tall and scrub growth forms), Casuarina glauca and Melaleuca quinquenervia that were distributed along transects from river/creek-front towards inland habitats. The isotopic composition of plant tissues and the potential water sources were assessed in both the wet season, when freshwater from rainfall is present, and the dry season, when mangrove trees are expected to be more dependent on tidal water, and when Casuarina and Melaleuca are expected to be dependent on groundwater. Our results indicate that rainwater during the wet season contributes significantly to estuarine vegetation, even to creek-side mangroves which are inundated by tidal creek water daily, and that estuarine vegetation depends primarily on freshwater throughout the year. In contrast, high intertidal scrub mangroves were found to use the greatest proportion of tidal creek water, supplemented by groundwater in the dry season. Contrary to prediction, inland trees C. glauca and M. quinquenervia were found also to rely predominantly on rainwater--even in the dry season. The results of this study reveal a high level of complexity in vegetation water use in estuarine settings.


Subject(s)
Avicennia/physiology , Estuaries , Magnoliopsida/physiology , Plant Physiological Phenomena , Deuterium/analysis , Ecosystem , Fresh Water , Groundwater , Linear Models , Oxygen Isotopes/analysis , Plant Stems/metabolism , Queensland , Rain , Salinity , Seasons , Water
14.
Water Res ; 44(19): 5684-92, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20638700

ABSTRACT

The geochemical fates of Fe and As are so closely correlated that methods of As removal from contaminated water are in general based on the high affinity of this metalloid for Fe (hydr)oxides. Dissimilatory Fe reducing bacteria, however, play a fundamental role in catalysing the redox transformations that ultimately control the mobility of As in anoxic environments. The potential of Al-goethites in adsorbing As(V) compared with hematite, goethite, ferrihydrite, and gibbsite, and the stability of As retained by the Fe compounds under anoxic conditions were investigated in this study. The (hydr)oxides were synthesised, and adsorption isotherms and As(V) adsorption maxima at different pH were measured. Arsenic loaded samples were anaerobically incubated in the presence of Shewanella putrefaciens, and periodically sampled to evaluate the contents of soluble As and Fe. The As(V) adsorption maxima decreased in the following order: Fh > AlGt(13) > AlGt(20) > AlGt(23) > Gb > Hm > Gt. In terms of surface area, Gb, Gt, and Hm showed higher As(V) loading capacity than Fh, suggesting available reactive sites not fully occupied by arsenate on Fh. The same hypothesis can be considered for Al-goethites, as they showed even lower arsenate loading capacity per surface area. The presence of structural Al in the goethites enhanced considerably the As uptake capacity and stability under reducing conditions. Therefore, the Al-goethites showed good potential as adsorbents to remove As from water. S. putrefaciens cells were able to utilise both noncrystalline and crystalline Fe (hydr)oxides as electron acceptors, releasing As into solution. Al-goethites showed a decrease in Fe and As mobilisation as structural Al increased.


Subject(s)
Aluminum Compounds/chemistry , Arsenic/analysis , Iron Compounds/chemistry , Minerals/chemistry , Mining , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Arsenic/chemistry , Arsenic/isolation & purification , Ferric Compounds/chemistry , Spectrophotometry, Atomic , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...