Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Divers ; 25(4): 2045-2052, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32372249

ABSTRACT

A series of thirty-one new compounds were synthesized and evaluated for their anti-HIV-1 and cytotoxicity activity. Of these, twelve were found to be inhibitors of HIV replications in primary human lymphocytes with median effective concentration (EC50) values < 20 µM. However, most of the compounds demonstrated cytotoxicity in different cells. Our structure activity relationship study identified different patterns. In the series of 2-aryl pyrrolidines, comparing the activity of the compounds containing 2-aryl substituents we observed that compounds 1c, 1f-j, 2f,g with benzyloxyphenyl and isopropoxy groups were more potent. Compounds 1g-j, 2f,g, in which the 1-aryl moiety contained a methyl group in 3,5- or 4-positions also showed high activity. In the series of compounds containing the amide, aminomethyl and nitrile groups we observed an increase in activity with C(O)NH2 < CH2NH2 < CN. In the series of 2-pyrimidinyl pyrrolidines, the best results were demonstrated with derivatives 5e and 5f, in which the presence of a benzyl fragment in 1st and aniline fragment in 6th positions of pyrimidine ring we observed an increase in anti-HIV activity. Molecular docking studies of synthesized compounds with HIV-1 reverse transcriptase enzyme were performed. Binding energies of ligands were estimated, and the interacting amino acids of HIV-1 reverse transcriptase protein were shown. Based on corroborative results of the molecular docking studies and in vitro experiments, we suggest that three groups of synthesized ligands (1c, 1f-i), (2f,g), (5e,f, 7) are of high interest for further research on new drugs against HIV. General structure of synthesized 2-aryl and 2-pyrimidinyl pyrrolidines.


Subject(s)
Molecular Docking Simulation
2.
Med Chem Res ; 26(1): 101-108, 2017 Jan.
Article in English | MEDLINE | ID: mdl-34305373

ABSTRACT

A series of 26 new compounds were synthesized and screened for their anti-human immunodeficiency virus-1 and cytotoxicity activity. Of these, 14 were found to be inhibitors of human immunodeficiency virus replications in primary human lymphocytes with 50 % effective concentration values <20 µM. Moreover, most of the compounds were cytotoxic to human lymphocytes, CEM, and Vero cells. Our structure activity relationship study identified different patterns. Compounds 2g-j and 4 (whose structure is closer to the loviride structure) were very potent. Comparing the activity of the compounds containing the 2-aryl substituents, we observed that compounds with benzyloxyphenyl groups were more potent. Compounds in which the 1-aryl moiety contained methyl group in 4- or 3,5-positions also showed high activity. In the series of compounds containing the nitrile, amine, and amide groups, we observed a decrease in activity with CN > NH2 > C(O)NH2. The difference of activity between the 5-membered and 4-membered rings compounds was not significant. This initial information could be used to design improved anti-human immunodeficiency virus compounds in this class.

SELECTION OF CITATIONS
SEARCH DETAIL