Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 10: 1243, 2019.
Article in English | MEDLINE | ID: mdl-31275254

ABSTRACT

Microbially enhanced oil recovery (MEOR) of heavy oil and bitumen is challenging because light hydrocarbons, which can feed resident microbial communities are present in low concentrations, if at all. We have recently shown that increasing the toluene concentration of heavy oil by aqueous injection followed by injection of nitrate boosts the activity of toluene-oxidizing nitrate-reducing bacteria in heavy oil-containing sand pack columns, giving production of residual oil in place (ROIP). In the current work we found that ethylbenzene is as effective as toluene. Microbial community analyses indicated Thauera and Pseudomonas to be main components of nitrate-containing batch and continuous cultures, regardless whether ethylbenzene or toluene was used as the electron donor. Biomass from batch cultures grown with heavy oil amended with ethylbenzene or toluene and nitrate or biomass from continuous cultures grown on ethylbenzene or toluene and nitrate had similar MEOR activity. Increasing the concentration of injected biomass from continuous cultures increased the fraction of ROIP recovered both in the absence and in the presence of nitrate. Nitrate increased the fraction of ROIP recovered by about 2-fold by increasing the concentration of biomass in the columns. Emulsification of oil by surface-adhering biomass and blocking of aqueous flow channels by oil emulsion droplets are proposed as a possible mechanism of hydrocarbon- and nitrate-mediated MEOR. Pure isolates Thauera sp. NS1 and Pseudomonas sp. NS2, which used both ethylbenzene and toluene, were obtained but did not offer improved MEOR compared to the use of batch and continuous cultures.

2.
J Hazard Mater ; 334: 68-75, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28402896

ABSTRACT

Amendment of reservoir fluid with injected substrates can enhance the growth and activity of microbes. The present study used isopropyl alcohol (IPA) or acetone to enhance the indigenous anaerobic nitrate-reducing bacterium Thauera sp. TK001. The strain was able to grow on IPA or acetone and nitrate. To monitor effects of strain TK001 on oil recovery, sand-packed columns containing heavy oil were flooded with minimal medium at atmospheric or high (400psi) pressure. Bioreactors were then inoculated with 0.5 pore volume (PV) of minimal medium containing Thauera sp. TK001 with 25mM of acetone or 22.2mM of IPA with or without 80mM nitrate. Incubation without flow for two weeks and subsequent injection with minimal medium gave an additional 17.0±6.7% of residual oil in place (ROIP) from low-pressure bioreactors and an additional 18.3% of ROIP from the high-pressure bioreactors. These results indicate that acetone or IPA, which are commonly used organic solvents, are good substrates for nitrate-mediated microbial enhanced oil recovery (MEOR), comparable to glucose, acetate or molasses, tested previously. This technology may be used for coupling biodegradation of IPA and/or acetone in waste streams to MEOR where these waste streams are generated in close proximity to an oil field.


Subject(s)
2-Propanol/metabolism , Acetone/metabolism , Industrial Waste , Nitrates/metabolism , Petroleum/metabolism , Thauera/metabolism , Biodegradation, Environmental , Bioreactors , Denitrification , Oxidation-Reduction , Pressure , Thauera/growth & development , Wastewater
3.
Crit Rev Food Sci Nutr ; 57(6): 1078-1088, 2017 Apr 13.
Article in English | MEDLINE | ID: mdl-26560460

ABSTRACT

Spices are parts of plants that due to their properties are used as colorants, preservatives, or medicine. The uses of spices have been known since long time, and the interest in the potential of spices is remarkable due to the chemical compounds contained in spices, such as phenylpropanoids, terpenes, flavonoids, and anthocyanins. Spices, such as cumin (cuminaldehyde), clove (eugenol), and cinnamon (cinnamaldehyde) among others, are known and studied for their antimicrobial and antioxidant properties due to their main chemical compounds. These spices have the potential to be used as preservatives in many foods namely in processed meat to replace chemical preservatives. Main chemical compounds in spices also confer other properties providing a variety of applications to spices, such as insecticidal, medicines, colorants, and natural flavoring. Spices provide beneficial effects, such as antioxidant activity levels that are comparable to regular chemical antioxidants used so they can be used as a natural alternative to synthetic preservatives. In this review, the main characteristics of spices will be described as well as their chemical properties, different applications of these spices, and the advantages and disadvantages of their use.


Subject(s)
Spices/analysis , Anthocyanins/analysis , Anthocyanins/chemistry , Anti-Infective Agents/analysis , Anti-Infective Agents/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Cinnamomum zeylanicum/chemistry , Cuminum/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Food Coloring Agents/analysis , Food Preservatives/analysis , Food Preservatives/chemistry , Zingiber officinale/chemistry , Insecticides/analysis , Insecticides/chemistry , Piper nigrum/chemistry , Plant Extracts/analysis , Plant Extracts/chemistry , Rosmarinus/chemistry , Syzygium/chemistry , Terpenes/analysis , Terpenes/chemistry
4.
J Hazard Mater ; 324(Pt A): 94-99, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-26995731

ABSTRACT

Microbially Enhanced Oil Recovery (MEOR) can enhance oil production with less energy input and less costs than other technologies. The present study used different aqueous electron donors (acetate, glucose, molasses) and an aqueous electron acceptor (nitrate) to stimulate growth of heterotrophic nitrate reducing bacteria (hNRB) to improve production of oil. Initial flooding of columns containing heavy oil (viscosity of 3400cP at 20°C) with CSBK (Coleville synthetic brine medium) produced 0.5 pore volume (PV) of oil. Bioreactors were then inoculated with hNRB with 5.8g/L of molasses and 0, 10, 20, 40, 60 or 80mM nitrate, as well as with 17mM glucose or 57mM acetate and 80mM nitrate. During incubations no oil was produced in the bioreactors that received 5.8g/L of molasses and 0, 10, 20, 40 or 60mM nitrate. However, the bioreactors injected with 5.8g/L of molasses, 17mM glucose or 57mM acetate and 80mM nitrate produced 13.9, 11.3±3.1 and 17.8±6.6% of residual oil, respectively. The significant production of oil from these bioreactors may be caused by N2-CO2 gas production. Following continued injection with CSBK without nitrate, subsequent elution of significant residual oil (5-30%) was observed. These results also indicate possible involvement of fermentation products (organic acids, alcohols) to enhance heavy oil recovery.


Subject(s)
Bioreactors , Nitrates/metabolism , Petroleum/metabolism , Bacteria , Electrons , Emulsions , Heterotrophic Processes , Industrial Waste , Molasses/microbiology , Oxidation-Reduction , Surface Tension , Viscosity
5.
Crit Rev Food Sci Nutr ; 56(13): 2133-48, 2016 Oct 02.
Article in English | MEDLINE | ID: mdl-25750989

ABSTRACT

Several food additives are added in food for their preservation to maintain the freshness of food (antioxidants) or to slow down or stop the growth of microorganisms (preservative agents). Nitrites and nitrates are used as preservative agents in meat. Nitrites give a smoked taste, a pinkish color in the meat and protect the consumers against the risk of bacterial deterioration. Their addition is however very limited as, in high dose, it can have risks on human health and the environment. Nitrites may also combine with secondary or tertiary amines to form N-nitroso derivatives. Certain N-nitroso compounds have been shown to produce cancers in a wide range of laboratory animals. Thus, alternatives of nitrates and nitrites are the object of numerous research studies. Alternatives, such as the addition of vitamins, fruits, chemicals products, natural products containing nitrite or spices, which have similar properties of nitrites, are in evaluation. In fact, spices are considered to have several organoleptic and anti-microbial properties which would be interesting to study. Several spices and combinations of spices are being progressively evaluated. This review discusses the sources of nitrites and nitrates, their use as additives in food products, their physicochemical properties, their negatives effects and the use of alternatives of nitrites and nitrates in preserving meat products.


Subject(s)
Food Preservation/methods , Food Preservatives , Meat Products/analysis , Nitrates , Nitrites , Animals , Anti-Bacterial Agents , Chemical Phenomena , Food Additives , Humans , Meat/analysis , Nitrates/adverse effects , Nitrates/chemistry , Nitrates/pharmacokinetics , Nitrites/adverse effects , Nitrites/chemistry , Nitrites/pharmacokinetics , Nitrosamines/chemistry , Spices
6.
Environ Sci Technol ; 49(20): 12594-601, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26406569

ABSTRACT

Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.


Subject(s)
Bioreactors , Hydraulic Fracking/methods , Hydrocarbons , Nitrates , Petroleum , Bacteria , Bioreactors/microbiology , Petroleum/microbiology , Toluene , Water
7.
Chemosphere ; 92(10): 1356-60, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23668961

ABSTRACT

Many endocrine disruptor compounds, such as bisphenol A (BPA) are used today and released into the environment at low doses but they are barely degraded in wastewater treatment plants. One of the potential alternatives to effectively degrade endocrine disruptor compounds is based on the use of the oxidative action of extracellular fungal enzymes. The aim of this work is to study the ability of free and encapsulated enzymes (manganese peroxidase, lignin peroxidase and laccase) to degrade BPA. Higher degradation of BPA (90%) by ligninolytic enzymes encapsulated on polyacrylamide hydrogel and pectin after 8h was obtained. The degradation of BPA while using the free enzyme (26%) was lower than the value obtained with encapsulated enzymes. The presence of pectin in the formulation significantly (p>0.05) enhanced the activity of enzymes. Kinetics of BPA degradation showed an increase in Vm, while Km remained constant when enzymes were encapsulated. Hence, encapsulation protected the enzymes from non-competitive inhibition.


Subject(s)
Benzhydryl Compounds/metabolism , Endocrine Disruptors/metabolism , Enzymes, Immobilized/metabolism , Fungi/enzymology , Laccase/metabolism , Peroxidases/metabolism , Phenols/metabolism , Acrylic Resins/chemistry , Benzhydryl Compounds/isolation & purification , Biodegradation, Environmental , Endocrine Disruptors/isolation & purification , Environmental Pollutants/isolation & purification , Environmental Pollutants/metabolism , Hydrogels/chemistry , Phenols/isolation & purification , Water/analysis
8.
Biotechnol Lett ; 34(10): 1811-5, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22791227

ABSTRACT

Lignin quantification in apple pomace residues was carried out using a microwave oven to replace traditional refluxing during the mild acidolysis step to augment the selectivity of this step towards cleavage of lignin-carbohydrate bonds and to reduce the time needed to quantify lignin. The pressure, temperature and time were optimized by response surface methodology and the results were compared to the Klason lignin methodology. Temperature and pressure had a significant positive effect (p < 0.05) on the determination of lignin. However, the time was also significant (p < 0.05) on lignin quantification. The optimal conditions of digestion were: 30 bar, 170 °C for 15 min. The digestion using microwave (lignin content = 33 % w/w) was more accurate (p < 0.05) than the the traditional refluxing (lignin content = 27 % w/w).


Subject(s)
Lignin/chemistry , Microwaves , Analysis of Variance , Hot Temperature , Lignin/analysis , Malus/chemistry , Pressure , Time Factors
9.
J Hazard Mater ; 192(3): 1178-85, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21733627

ABSTRACT

Fruit processing industries generate tremendous amount of solid wastes which is almost 35-40% dry weight of the total produce used for the manufacturing of juices. These solid wastes, referred to as, "pomace" contain high moisture content (70-75%) and biodegradable organic load (high BOD and COD values) so that their management is an important issue. During the management of these pomace wastes by different strategies comprising incineration, landfill, composting, solid-state fermentation to produce high-value enzymes and animal feed, there is production of greenhouse gases (GHG) which must be taken into account. In this perspective, this study is unique that discusses the GHG emission analysis of agro-industrial waste management strategies, especially apple pomace waste management and repercussions of value-addition of these wastes in terms of their sustainability using life cycle assessment (LCA) model. The results of the analysis indicated that, among all the apple pomace management sub-models for a functional unit, solid-state fermentation to produce enzymes was the most effective method for reducing GHG emissions (906.81 tons CO(2) eq. per year), while apple pomace landfill resulted in higher GHG emissions (1841.00 tons CO(2) eq. per year). The assessment and inventory of GHG emissions during solid-state fermentation gave positive indications of environmental sustainability for the use of this strategy to manage apple pomace and other agricultural wastes, particularly in Quebec and also extended to other countries. The analysis and use of parameters in this study were drawn from various analytical approaches and data sources. There was absence of some data in the literature which led to consideration of some assumptions in order to calculate GHG emissions. Hence, supplementary experimental studies will be very important to calculate the GHG emissions coefficients during agro-industrial waste management.


Subject(s)
Waste Management/methods , Agriculture/methods , Carbon Dioxide/chemistry , Environment , Environmental Monitoring/methods , Fermentation , Gases , Greenhouse Effect , Incineration/methods , Industrial Waste , Malus , Quebec , Refuse Disposal/methods , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...