Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Hazard Mater ; 321: 764-772, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27720469

ABSTRACT

Acid mine drainages (AMD) are major sources of pollution to the environment. Passive bio-remediation technologies involving sulfate-reducing bacteria (SRB) are promising for treating arsenic contaminated waters. However, mechanisms of biogenic As-sulfide formation need to be better understood to decontaminate AMDs in acidic conditions. Here, we show that a high-As AMD effluent can be decontaminated by an indigenous SRB consortium. AMD water from the Carnoulès mine (Gard, France) was incubated with the consortium under anoxic conditions and As, Zn and Fe concentrations, pH and microbial activity were monitored during 94days. Precipitated solids were analyzed using electron microscopy (SEM/TEM-EDXS), and Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy at the As K-edge. Total removal of arsenic and zinc from solution (1.06 and 0.23mmol/L, respectively) was observed in two of the triplicates. While Zn precipitated as ZnS nanoparticles, As precipitated as amorphous orpiment (am-AsIII2S3) (33-73%), and realgar (AsIIS) (0-34%), the latter phase exhibiting a particular nanowire morphology. A minor fraction of As is also found as thiol-bound AsIII (14-23%). We propose that the formation of the AsIIS nanowires results from AsIII2S3 reduction by biogenic H2S, enhancing the efficiency of As removal. The present description of As immobilization may help to set the basis for bioremediation strategies using SRB.


Subject(s)
Arsenic/isolation & purification , Industrial Waste/analysis , Mining , Sulfur-Reducing Bacteria/metabolism , Water Pollutants, Chemical/metabolism , Zinc/isolation & purification , Arsenicals/chemistry , Arsenicals/isolation & purification , Biodegradation, Environmental , Decontamination , Desulfovibrio , Hydrogen-Ion Concentration , Nanowires , Sulfides/chemistry , Sulfides/isolation & purification , Water Pollutants, Chemical/chemistry , X-Ray Diffraction , Zinc Compounds/chemistry , Zinc Compounds/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL