Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Physiol ; 8: 398, 2017.
Article in English | MEDLINE | ID: mdl-28659819

ABSTRACT

Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene (MMP20) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

2.
J Med Genet ; 53(2): 98-110, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26502894

ABSTRACT

BACKGROUND: Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. METHODS: We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. RESULTS: We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. CONCLUSIONS: We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. TRIAL REGISTRATION NUMBERS: NCT01746121 and NCT02397824.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Mutation , Tooth Abnormalities/genetics , Amelogenesis Imperfecta/genetics , Autoantigens/genetics , Chromosome Deletion , Chromosome Disorders/genetics , Chromosomes, Human, Pair 11/genetics , Cohort Studies , Coloboma/genetics , Dentin Dysplasia/genetics , France , Hearing Loss, Sensorineural/genetics , Humans , Non-Fibrillar Collagens/genetics , Reproducibility of Results , Collagen Type XVII
3.
Evodevo ; 6: 29, 2015.
Article in English | MEDLINE | ID: mdl-26421144

ABSTRACT

BACKGROUND: In a recent study, we have demonstrated that amelotin (AMTN) gene structure and its expression during amelogenesis have changed during tetrapod evolution. Indeed, this gene is expressed throughout enamel matrix deposition and maturation in non-mammalian tetrapods, while in mammals its expression is restricted to the transition and maturation stages of amelogenesis. Previous studies of amelogenin (AMEL) gene expression in a lizard and a salamander have shown similar expression pattern to that in mammals, but to our knowledge there are no data regarding ameloblastin (AMBN) and enamelin (ENAM) expression in non-mammalian tetrapods. The present study aims to look at, and compare, the structure and expression of four enamel matrix protein genes, AMEL, AMBN, ENAM and AMTN during amelogenesis in the lizard Anolis carolinensis. RESULTS: We provide the full-length cDNA sequence of A. carolinensis AMEL and AMBN, and show for the first time the expression of ENAM and AMBN in a non-mammalian species. During amelogenesis in A. carolinensis, AMEL, AMBN and ENAM expression in ameloblasts is similar to that described in mammals. It is noteworthy that AMEL and AMBN expression is also found in odontoblasts. CONCLUSIONS: Our findings indicate that AMTN is the only enamel matrix protein gene that is differentially expressed in ameloblasts between mammals and sauropsids. Changes in AMTN structure and expression could be the key to explain the structural differences between mammalian and reptilian enamel, i.e. prismatic versus non-prismatic.

4.
BMC Evol Biol ; 15: 148, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26223266

ABSTRACT

BACKGROUND: Ameloblastin (AMBN) is a phosphorylated, proline/glutamine-rich protein secreted during enamel formation. Previous studies have revealed that this enamel matrix protein was present early in vertebrate evolution and certainly plays important roles during enamel formation although its precise functions remain unclear. We performed evolutionary analyses of AMBN in order to (i) identify residues and motifs important for the protein function, (ii) predict mutations responsible for genetic diseases, and (iii) understand its molecular evolution in mammals. RESULTS: In silico searches retrieved 56 complete sequences in public databases that were aligned and analyzed computationally. We showed that AMBN is globally evolving under moderate purifying selection in mammals and contains a strong phylogenetic signal. In addition, our analyses revealed codons evolving under significant positive selection. Evidence for positive selection acting on AMBN was observed in catarrhine primates and the aye-aye. We also found that (i) an additional translation initiation site was recruited in the ancestral placental AMBN, (ii) a short exon was duplicated several times in various species including catarrhine primates, and (iii) several polyadenylation sites are present. CONCLUSIONS: AMBN possesses many positions, which have been subjected to strong selective pressure for 200 million years. These positions correspond to several cleavage sites and hydroxylated, O-glycosylated, and phosphorylated residues. We predict that these conserved positions would be potentially responsible for enamel disorder if substituted. Some motifs that were previously identified as potentially important functionally were confirmed, and we found two, highly conserved, new motifs, the function of which should be tested in the near future. This study illustrates the power of evolutionary analyses for characterizing the functional constraints acting on proteins with yet uncharacterized structure.


Subject(s)
Amelogenesis Imperfecta/genetics , Dental Enamel Proteins/genetics , Mammals/genetics , Amelogenesis Imperfecta/metabolism , Amino Acid Sequence , Animals , Conserved Sequence , Dental Enamel/metabolism , Dental Enamel Proteins/chemistry , Dental Enamel Proteins/metabolism , Evolution, Molecular , Humans , Mammals/metabolism , Molecular Sequence Data , Mutation , Phylogeny , Protein Biosynthesis , Protein Sorting Signals , Sequence Alignment
5.
PLoS One ; 10(7): e0133314, 2015.
Article in English | MEDLINE | ID: mdl-26186457

ABSTRACT

Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein family, which also includes the enamel matrix proteins amelogenin, ameloblastin and enamelin. Although AMTN is supposed to play an important role in enamel formation, data were long limited to the rodents, in which it is expressed during the maturation stage. Recent comparative studies in sauropsids and amphibians revealed that (i) AMTN was expressed earlier, i.e. as soon as ameloblasts are depositing the enamel matrix, and (ii) AMTN structure was different, a change which mostly resulted from an intraexonic splicing in the large exon 8 of an ancestral mammal. The present study was performed to know whether the differences in AMTN structure and expression in rodents compared to non-mammalian tetrapods dated back to an early ancestral mammal or were acquired later in mammalian evolution. We sequenced, assembled and screened the jaw transcriptome of a neonate opossum Monodelphis domestica, a marsupial. We found two AMTN transcripts. Variant 1, representing 70.8% of AMTN transcripts, displayed the structure known in rodents, whereas variant 2 (29.2%) exhibited the nonmammalian tetrapod structure. Then, we studied AMTN expression during amelogenesis in a neonate specimen. We obtained similar data as those reported in rodents. These findings indicate that more than 180 million years ago, before the divergence of marsupials and placentals, changes occurred in AMTN function and structure. The spatiotemporal expression was delayed to the maturation stage of amelogenesis and the intraexonic splicing gave rise to isoform 1, encoded by variant 1 and lacking the RGD motif. The ancestral isoform 2, housing the RGD, was initially conserved, as demonstrated here in a marsupial, then secondarily lost in the placental lineages. These findings bring new elements towards our understanding of the non-prismatic to prismatic enamel transition that occurred at the onset of mammals.


Subject(s)
Amelogenesis/genetics , Dental Enamel/growth & development , Dental Enamel/metabolism , Gene Expression Regulation, Developmental , Monodelphis/genetics , Amino Acid Sequence , Animals , Animals, Newborn , Dental Enamel Proteins/chemistry , Dental Enamel Proteins/genetics , Dental Enamel Proteins/metabolism , Molecular Sequence Data , Monodelphis/growth & development , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment
6.
BMC Evol Biol ; 15: 47, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25884299

ABSTRACT

BACKGROUND: Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein (SCPP) family, which originated in early vertebrates. In rodents, AMTN is expressed during the maturation stage of amelogenesis only. This expression pattern strongly differs from the spatiotemporal expression of other ameloblast-secreted SCPPs, such as the enamel matrix proteins (EMPs). Furthermore, AMTN was characterized in rodents only. In this study, we applied various approaches, including in silico screening of databases, PCRs and transcriptome sequencing to characterize AMTN sequences in sauropsids and amphibians, and compared them to available mammalian and coelacanth sequences. RESULTS: We showed that (i) AMTN is tooth (enamel) specific and underwent pseudogenization in toothless turtles and birds, and (ii) the AMTN structure changed during tetrapod evolution. To infer AMTN function, we studied spatiotemporal expression of AMTN during amelogenesis in a salamander and a lizard, and compared the results with available expression data from mouse. We found that AMTN is expressed throughout amelogenesis in non-mammalian tetrapods, in contrast to its expression limited to enamel maturation in rodents. CONCLUSIONS: Taken together our findings suggest that AMTN was primarily an EMP. Its functions were conserved in amphibians and sauropsids while a change occurred early in the mammalian lineage, modifying its expression pattern during amelogenesis and its gene structure. These changes likely led to a partial loss of AMTN function and could have a link with the emergence of prismatic enamel in mammals.


Subject(s)
Dental Enamel Proteins/genetics , Dental Enamel Proteins/metabolism , Evolution, Molecular , Vertebrates/genetics , Amelogenesis , Animals , Base Sequence , Dental Enamel/metabolism , Mammals/genetics , Molecular Sequence Data , RNA Splicing , Sequence Alignment , Vertebrates/classification
7.
J Biol Chem ; 289(35): 24168-79, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25023282

ABSTRACT

ALPL encodes the tissue nonspecific alkaline phosphatase (TNSALP), which removes phosphate groups from various substrates. Its function is essential for bone and tooth mineralization. In humans, ALPL mutations lead to hypophosphatasia, a genetic disorder characterized by defective bone and/or tooth mineralization. To date, 275 ALPL mutations have been reported to cause hypophosphatasia, of which 204 were simple missense mutations. Molecular evolutionary analysis has proved to be an efficient method to highlight residues important for the protein function and to predict or validate sensitive positions for genetic disease. Here we analyzed 58 mammalian TNSALP to identify amino acids unchanged, or only substituted by residues sharing similar properties, through 220 millions years of mammalian evolution. We found 469 sensitive positions of the 524 residues of human TNSALP, which indicates a highly constrained protein. Any substitution occurring at one of these positions is predicted to lead to hypophosphatasia. We tested the 204 missense mutations resulting in hypophosphatasia against our predictive chart, and validated 99% of them. Most sensitive positions were located in functionally important regions of TNSALP (active site, homodimeric interface, crown domain, calcium site, …). However, some important positions are located in regions, the structure and/or biological function of which are still unknown. Our chart of sensitive positions in human TNSALP (i) enables to validate or invalidate at low cost any ALPL mutation, which would be suspected to be responsible for hypophosphatasia, by contrast with time consuming and expensive functional tests, and (ii) displays higher predictive power than in silico models of prediction.


Subject(s)
Alkaline Phosphatase/genetics , Evolution, Molecular , Hypophosphatasia/genetics , Mutation, Missense , Alkaline Phosphatase/chemistry , Alkaline Phosphatase/classification , Amino Acid Sequence , Amino Acid Substitution , Animals , Base Sequence , DNA Primers , Humans , Molecular Sequence Data , Phylogeny , Protein Processing, Post-Translational
8.
J Exp Zool B Mol Dev Evol ; 320(4): 200-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23508977

ABSTRACT

Well studied in mammals, amelogenesis is less known at the molecular level in reptiles and amphibians. In the course of extensive studies of enamel matrix protein (EMP) evolution in tetrapods, we look for correlation between changes in protein sequences and temporospatial protein gene expression during amelogenesis, using an evo-devo approach. Our target is the major EMP, amelogenin (AMEL) that plays a crucial role in enamel structure. We focused here our attention to an amphibian, the salamander Pleurodeles waltl. RNAs were extracted from the lower jaws of a juvenile P. waltl and the complete AMEL sequence was obtained using PCR and RACE PCR. The alignment of P. waltl AMEL with other tetrapodan (frogs, reptiles and mammals) sequences revealed residue conservation in the N- and C-terminal regions, and a highly variable central region. Using sense and anti-sense probes synthetized from the P. waltl AMEL sequence, we performed in situ hybridization on sections during amelogenesis in larvae, juveniles, and adults. We demonstrated that (i) AMEL expression was always found to be restricted to ameloblasts, (ii) the expression pattern was conserved through ontogeny, even in larvae where enameloid is present in addition to enamel, and (iii) the processes are similar to those described in lizards and mammals. These findings indicate that high variations in the central region of AMEL have not modified its temporospatial expression during amelogenesis for 360 million years of tetrapod evolution.


Subject(s)
Amelogenin/genetics , Dental Enamel/chemistry , Evolution, Molecular , Gene Expression , Ameloblasts/cytology , Ameloblasts/metabolism , Amelogenesis/genetics , Amelogenin/metabolism , Amino Acid Sequence , Amphibians/genetics , Animals , Conserved Sequence/genetics , Dental Enamel/metabolism , Dental Enamel/ultrastructure , In Situ Hybridization , Lizards/genetics , Mammals/genetics , Phylogeny , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...