Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39288061

ABSTRACT

Ultrasound Localization Microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature of different tissues. Various deep-learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubbles distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.

2.
IEEE Trans Med Imaging ; 40(5): 1428-1437, 2021 05.
Article in English | MEDLINE | ID: mdl-33534705

ABSTRACT

Ultrasound Localization Microscopy (ULM) can resolve the microvascular bed down to a few micrometers. To achieve such performance, microbubble contrast agents must perfuse the entire microvascular network. Microbubbles are then located individually and tracked over time to sample individual vessels, typically over hundreds of thousands of images. To overcome the fundamental limit of diffraction and achieve a dense reconstruction of the network, low microbubble concentrations must be used, which leads to acquisitions lasting several minutes. Conventional processing pipelines are currently unable to deal with interference from multiple nearby microbubbles, further reducing achievable concentrations. This work overcomes this problem by proposing a Deep Learning approach to recover dense vascular networks from ultrasound acquisitions with high microbubble concentrations. A realistic mouse brain microvascular network, segmented from 2-photon microscopy, was used to train a three-dimensional convolutional neural network (CNN) based on a V-net architecture. Ultrasound data sets from multiple microbubbles flowing through the microvascular network were simulated and used as ground truth to train the 3D CNN to track microbubbles. The 3D-CNN approach was validated in silico using a subset of the data and in vivo in a rat brain. In silico, the CNN reconstructed vascular networks with higher precision (81%) than a conventional ULM framework (70%). In vivo, the CNN could resolve micro vessels as small as 10 µ m with an improvement in resolution when compared against a conventional approach.


Subject(s)
Deep Learning , Microscopy , Animals , Image Processing, Computer-Assisted , Mice , Microbubbles , Neural Networks, Computer , Ultrasonography
3.
Article in English | MEDLINE | ID: mdl-28792894

ABSTRACT

Single plane wave (PW) imaging produces ultrasound images of poor quality at high frame rates (ultrafast). High-quality PW imaging usually relies on the coherent compounding of several successive steered emissions (typically more than ten), which in turn results in a decreased frame rate. We propose a new strategy to reduce the number of emitted PWs by learning a compounding operation from data, i.e., by training a convolutional neural network to reconstruct high-quality images using a small number of transmissions. We present experimental evidence that this approach is promising, as we were able to produce high-quality images from only three PWs, competing in terms of contrast ratio and lateral resolution with the standard compounding of 31 PWs ( 10× speedup factor).

SELECTION OF CITATIONS
SEARCH DETAIL