Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 240: 67-74, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28946327

ABSTRACT

Bioactive lipids of the milk fat globule membrane become concentrated in two co-products of the butter industry, buttermilk and butterserum. Their lipid composition is detailed here with special emphasis on sphingolipid composition of nutritional interest, determined using GC, HPLC and tandem mass spectrometry. Butterserum was 2.5 times more concentrated in total fat than buttermilk, with 7.7±1.5vs 19.5±2.9wt% and even more concentrated in polar lipids, with 1.4±0.2vs 8.5±1.1wt%. Both ingredients constitute concentrated sources of sphingomyelin (3.4-21mg/g dry matter) and contained low amounts of bioactive ceramides in a ratio to sphingomyelin of 1:5mol% in buttermilk and 1:10mol% in butterserum. Compared to other natural lecithins, these two co-products are rich in long and saturated fatty acids (C22:0-C24:0), contain cholesterol and could have interesting applications in neonatal nutrition, but also as brain-protective, hepatoprotective and cholesterol lowering ingredients.


Subject(s)
Buttermilk/analysis , Ceramides/analysis , Milk/chemistry , Sphingolipids/analysis , Animals , Fatty Acids , Heterotaxy Syndrome , Humans
2.
J Dairy Res ; 69(4): 605-18, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12463697

ABSTRACT

The structure development of a soft cheese curd model has been studied in relationship to its rheological properties and its biochemical characteristics (pH, amount and partition of minerals, casein proteolysis) at different technical steps including cutting, drawing, three turns and demoulding. Scanning electron microscopy was used to observe structural changes during the drainage of a fat-free soft cheese. The micrographs provided visual evidence of changes in the casein matrix from casein particles aggregated in clusters to uniform strands observed at the demoulding. The initial increase of loss tangent and of the exponent of the power law between G' and G" and frequency (that were maximal at the second turn) was related to the solubilization of micellar calcium phosphate, while intact caseins and large casein fragments accumulated in the curd. After the second turn, the strength, Youngs' and loss moduli of the curd increased greatly. The hydrolysis of alpha(s1)-casein into alpha(s1)-I-CN f(24-199) may facilitate the rearrangement of casein particles within the curd. The pH-induced solubilization of calcium phosphate continued throughout the manufacture process but was unexpectedly incomplete at the end of the drainage. Combination of electron microscopic observations with dynamic rheological measurements and chemical and biochemical assessments provided increased knowledge about the structure of soft cheese during drainage, an important but poorly understood cheese making stage.


Subject(s)
Cheese/analysis , Food Handling/methods , Milk Proteins/chemistry , Animals , Caseins/chemistry , Caseins/ultrastructure , Chemical Phenomena , Chemistry, Physical , Hydrogen-Ion Concentration , Micelles , Microscopy, Electron, Scanning , Milk Proteins/ultrastructure , Particle Size , Rheology , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...