Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000135

ABSTRACT

DNA damage in the brain is influenced by endogenous processes and metabolism along with exogenous exposures. Accumulation of DNA damage in the brain can contribute to various neurological disorders, including neurodegenerative diseases and neuropsychiatric disorders. Traditional methods for assessing DNA damage in the brain, such as immunohistochemistry and mass spectrometry, have provided valuable insights but are limited by their inability to map specific DNA adducts and regional distributions within the brain or genome. Recent advancements in DNA damage detection methods offer new opportunities to address these limitations and further our understanding of DNA damage and repair in the brain. Here, we review emerging techniques offering more precise and sensitive ways to detect and quantify DNA lesions in the brain or neural cells. We highlight the advancements and applications of these techniques and discuss their potential for determining the role of DNA damage in neurological disease.


Subject(s)
Brain , DNA Damage , DNA Repair , Humans , Brain/metabolism , Animals
2.
Toxicol Sci ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867704

ABSTRACT

Inhalation exposures to dihydroxyacetone (DHA) occur through spray tanning and e-cigarette aerosols. Several studies in skin models have demonstrated that millimolar doses of DHA are cytotoxic, yet the genotoxicity was unclear. We examined the genotoxicity of DHA in cell models relevant to inhalation exposures. Human bronchial epithelial cells BEAS-2B, lung carcinoma cells A549, cardiomyocyte Ac16, and hepatocellular carcinoma HepG3 were exposed to DHA, and low millimolar doses of DHA were cytotoxic. IC90 DHA doses induced cell cycle arrest in all cells except the Ac16. We examined DHA's genotoxicity using strand break markers, DNA adduct detection by Repair Assisted Damage Detection (RADD), metaphase spreads, and a forward mutation assay for mutagenesis. Similar to results for skin, DHA did not induce significant levels of strand breaks. However, RADD revealed DNA adducts were induced 24 h after DHA exposure, with BEAS-2B and Ac16 showing oxidative lesions and A549 and HepG3 showing crosslink-type lesions. Yet, only low levels of reactive oxygen species or advanced glycation end products were detected after DHA exposure. Metaphase spreads revealed significant increases in chromosomal aberrations in the BEAS-2B and HepG3 with corresponding changes in ploidy. Finally, we confirmed the mutagenesis observed using the supF reporter plasmid. DHA increased the mutation frequency, consistent with methylmethane sulfonate, a mutagen and clastogen. These data demonstrate DHA is a clastogen, inducing cell-specific genotoxicity and chromosomal instability. The specific genotoxicity measured in the BEAS-2B in this study suggests that inhalation exposures pose health risks to vapers, requiring further investigation.

3.
Chem Biol Interact ; 394: 110991, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38582340

ABSTRACT

Exogenous exposures to the triose sugar dihydroxyacetone (DHA) occur from sunless tanning products and electronic cigarette aerosol. Once inhaled or absorbed, DHA enters cells, is converted to dihydroxyacetone phosphate (DHAP), and incorporated into several metabolic pathways. Cytotoxic effects of DHA vary across the cell types depending on the metabolic needs of the cells, and differences in the generation of reactive oxygen species (ROS), cell cycle arrest, and mitochondrial dysfunction have been reported. We have shown that cytotoxic doses of DHA induced metabolic imbalances in glycolysis and oxidative phosphorylation in liver and kidney cell models. Here, we examine the dose-dependent effects of DHA on the rat cardiomyocyte cell line, H9c2. Cells begin to experience cytotoxic effects at low millimolar doses, but an increase in cell survival was observed at 2 mM DHA. We confirmed that 2 mM DHA increased cell survival compared to the low cytotoxic 1 mM dose and investigated the metabolic differences between these two low DHA doses. Exposure to 1 mM DHA showed changes in the cell's fuel utilization, mitochondrial reactive oxygen species (ROS), and transient changes in the glycolysis and mitochondrial energetics, which normalized 24 h after exposure. The 2 mM dose induced robust changes in mitochondrial flux through acetyl CoA and elevated expression of fatty acid synthase. Distinct from the 1 mM dose, the 2 mM exposure increased mitochondrial ROS and NAD(P)H levels, and sustained changes in LDHA/LDHB and acetyl CoA-associated enzymes were observed. Although the cells were exposed to low cytotoxic (1 mM) and non-cytotoxic (2 mM) acute doses of DHA, significant changes in mitochondrial metabolic pathways occurred. Further, the proliferation increase at the acute 2 mM DHA dose suggests a metabolic adaption occurred with sustained consequences in survival and proliferation. With increased exogenous exposure to DHA through e-cigarette aerosol, this work suggests cell metabolic changes induced by acute or potentially chronic exposures could impact cell function and survival.


Subject(s)
Cell Survival , Dihydroxyacetone , Glycolysis , Mitochondria , Myocytes, Cardiac , Reactive Oxygen Species , Animals , Rats , Dihydroxyacetone/metabolism , Cell Survival/drug effects , Reactive Oxygen Species/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line , Glycolysis/drug effects , Metabolic Reprogramming
4.
Chem Res Toxicol ; 37(2): 248-258, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38198686

ABSTRACT

Pyridone-containing adenine dinucleotides, ox-NAD, are formed by overoxidation of nicotinamide adenine dinucleotide (NAD+) and exist in three distinct isomeric forms. Like the canonical nucleosides, the corresponding pyridone-containing nucleosides (PYR) are chemically stable, biochemically versatile, and easily converted to nucleotides, di- and triphosphates, and dinucleotides. The 4-PYR isomer is often reported with its abundance increasing with the progression of metabolic diseases, age, cancer, and oxidative stress. Yet, the pyridone-derived nucleotides are largely under-represented in the literature. Here, we report the efficient synthesis of the series of ox-NAD and pyridone nucleotides and measure the abundance of ox-NAD in biological specimens using liquid chromatography coupled with mass spectrometry (LC-MS). Overall, we demonstrate that all three forms of PYR and ox-NAD are found in biospecimens at concentrations ranging from nanomolar to midmicromolar and that their presence affects the measurements of NAD(H) concentrations when standard biochemical redox-based assays are applied. Furthermore, we used liver extracts and 1H NMR spectrometry to demonstrate that each ox-NAD isomer can be metabolized to its respective PYR isomer. Together, these results suggest a need for a better understanding of ox-NAD in the context of human physiology since these species are endogenous mimics of NAD+, the key redox cofactor in metabolism and bioenergetics maintenance.


Subject(s)
NAD , Nucleotides , Humans , NAD/metabolism , Nucleotides/metabolism , Nucleosides/metabolism , Energy Metabolism , Pyridones
5.
Cancers (Basel) ; 15(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958341

ABSTRACT

Heat shock factor 1 (HSF1) is a transcription factor crucial for regulating heat shock response (HSR), one of the significant cellular protective mechanisms. When cells are exposed to proteotoxic stress, HSF1 induces the expression of heat shock proteins (HSPs) to act as chaperones, correcting the protein-folding process and maintaining proteostasis. In addition to its role in HSR, HSF1 is overexpressed in multiple cancer cells, where its activation promotes malignancy and leads to poor prognosis. The mechanisms of HSF1-induced tumorigenesis are complex and involve diverse signaling pathways, dependent on cancer type. With its important roles in tumorigenesis and tumor progression, targeting HSF1 offers a novel cancer treatment strategy. In this article, we examine the basic function of HSF1 and its regulatory mechanisms, focus on the mechanisms involved in HSF1's roles in different cancer types, and examine current HSF1 inhibitors as novel therapeutics to treat cancers.

6.
DNA Repair (Amst) ; 128: 103529, 2023 08.
Article in English | MEDLINE | ID: mdl-37390674

ABSTRACT

DNA adducts and strand breaks are induced by various exogenous and endogenous agents. Accumulation of DNA damage is implicated in many disease processes, including cancer, aging, and neurodegeneration. The continuous acquisition of DNA damage from exogenous and endogenous stressors coupled with defects in DNA repair pathways contribute to the accumulation of DNA damage within the genome and genomic instability. While mutational burden offers some insight into the level of DNA damage a cell may have experienced and subsequently repaired, it does not quantify DNA adducts and strand breaks. Mutational burden also infers the identity of the DNA damage. With advances in DNA adduct detection and quantification methods, there is an opportunity to identify DNA adducts driving mutagenesis and correlate with a known exposome. However, most DNA adduct detection methods require isolation or separation of the DNA and its adducts from the context of the nuclei. Mass spectrometry, comet assays, and other techniques precisely quantify lesion types but lose the nuclear context and even tissue context of the DNA damage. The growth in spatial analysis technologies offers a novel opportunity to leverage DNA damage detection with nuclear and tissue context. However, we lack a wealth of techniques capable of detecting DNA damage in situ. Here, we review the limited existing in situ DNA damage detection methods and examine their potential to offer spatial analysis of DNA adducts in tumors or other tissues. We also offer a perspective on the need for spatial analysis of DNA damage in situ and highlight Repair Assisted Damage Detection (RADD) as an in situ DNA adduct technique with the potential to integrate with spatial analysis and the challenges to be addressed.


Subject(s)
DNA Adducts , Neoplasms , Humans , DNA Damage , DNA Repair , Mutagenesis , Neoplasms/genetics
7.
PLoS One ; 17(12): e0278516, 2022.
Article in English | MEDLINE | ID: mdl-36472985

ABSTRACT

Dihydroxyacetone (DHA) is the active ingredient in sunless tanning products and a combustion product from e-juices in electronic cigarettes (e-cigarettes). DHA is rapidly absorbed in cells and tissues and incorporated into several metabolic pathways through its conversion to dihydroxyacetone phosphate (DHAP). Previous studies have shown DHA induces cell cycle arrest, reactive oxygen species, and mitochondrial dysfunction, though the extent of these effects is highly cell-type specific. Here, we investigate DHA exposure effects in the metabolically active, HepG3 (C3A) cell line. Metabolic and mitochondrial changes were evaluated by characterizing the effects of DHA in metabolic pathways and nutrient-sensing mechanisms through mTOR-specific signaling. We also examined cytotoxicity and investigated the cell death mechanism induced by DHA exposure in HepG3 cells. Millimolar doses of DHA were cytotoxic and suppressed glycolysis and oxidative phosphorylation pathways. Nutrient sensing through mTOR was altered at both short and long time points. Increased mitochondrial reactive oxygen species (ROS) and mitochondrial-specific injury induced cell cycle arrest and cell death through a non-classical apoptotic mechanism. Despite its carbohydrate nature, millimolar doses of DHA are toxic to liver cells and may pose a significant health risk when higher concentrations are absorbed through e-cigarettes or spray tanning.


Subject(s)
Dihydroxyacetone , Electronic Nicotine Delivery Systems , Dihydroxyacetone/pharmacology , Reactive Oxygen Species , Mitochondria , Liver
8.
Int J Mol Sci ; 23(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35457130

ABSTRACT

Dysregulation of DNA repair is a hallmark of cancer, though few cancer-specific mechanisms that drive the overexpression of DNA repair proteins are known. We previously identified STAT3 as a novel transcriptional regulator of X-ray cross-complementing group 1 (XRCC1), an essential scaffold protein in base excision repair in triple-negative breast cancers. We also identified an inducible response to IL-6 and epidermal growth factor stimulation in the non-tumorigenic embryonic kidney cell line HEK293T. As IL-6 and EGF signaling are growth and inflammatory-inducible responses, we examined if glucose challenge can increase STAT3 activation, promoting adaptive changes in XRCC1 expression in different cell types. Acute high glucose exposure promoted XRCC1 expression through STAT3 activation, increasing the repair of methyl methanesulfonate-induced DNA damage in HEK293T cells and the osteosarcoma cell line U2OS. Sustained exposure to high glucose promoted the overexpression of XRCC1, which can be reversed upon glucose restriction and down-regulation of STAT3 activation. Thus, we have identified a novel link between XRCC1 expression and STAT3 activation following exogenous exposures, which could play a critical role in dictating a cancer cell's response to DNA-damaging agents.


Subject(s)
Glucose , Interleukin-6 , DNA Damage , DNA Repair , DNA-Binding Proteins/metabolism , Glucose/pharmacology , HEK293 Cells , Humans , Interleukin-6/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , X-ray Repair Cross Complementing Protein 1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism
9.
Chem Res Toxicol ; 35(4): 616-625, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35324152

ABSTRACT

Dihydroxyacetone (DHA) is a major byproduct of e-cigarette combustion and is the active ingredient in sunless tanning products. Mounting evidence points to its damaging effects on cellular functions. While developing a simple synthetic route to monomeric [13C3]DHA for flux metabolic studies that compared DHA and glyceraldehyde (GA) metabolism, we uncovered that solid DHA ages upon storage and differences in the relative abundance of each of its isomer occur when reconstituted in an aqueous solution. While all three of the dimeric forms of DHA ultimately resolve to the ketone and hydrated forms of monomeric DHA once in water at room temperature, these species require hours rather than minutes to reach an equilibrium favoring the monomeric species. Consequently, when used in bolus or flux experiments, the relative abundance of each isomer and its effects at the time of application is dependent on the initial DHA isomeric composition and concentration, and time of equilibration in solution before use. Here, we make recommendations for the more consistent handling of DHA as we report conditions that ensure that DHA is present in its monomeric form while in solutions, conditions used in an isotopic tracing study that specifically compared monomeric DHA and GA metabolism in cells.


Subject(s)
Dihydroxyacetone , Electronic Nicotine Delivery Systems , Isomerism , Solutions
10.
Cancers (Basel) ; 14(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35205762

ABSTRACT

African Americans (AA) are two times more likely to be diagnosed with and succumb to prostate cancer (PCa) compared to European Americans (EA). There is mounting evidence that biological differences in these tumors contribute to disparities in patient outcomes. Our goal was to examine the differences in DNA damage in AA and EA prostate tissues. Tissue microarrays with matched tumor-benign adjacent pairs from 77 AA and EA PCa patients were analyzed for abasic sites, oxidative lesions, crosslinks, and uracil content using the Repair Assisted Damage Detection (RADD) assay. Our analysis revealed that AA PCa, overall, have more DNA damage than EA PCa. Increased uracil and pyrimidine lesions occurred in AA tumors, while EA tumors had more oxidative lesions. AA PCa have higher levels of UMP and folate cycle metabolites than their EA counterparts. AA PCa showed higher levels of UNG, the uracil-specific glycosylase, than EA, despite uracil lesions being retained within the genome. AA patients also had lower levels of the base excision repair protein XRCC1. These results indicate dysfunction in the base excision repair pathway in AA tumors. Further, these findings reveal how metabolic rewiring in AA PCa drives biological disparities and identifies a targetable axis for cancer therapeutics.

11.
Integr Comp Biol ; 61(6): 2163-2179, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34427654

ABSTRACT

Why do some biological systems and communities persist while others fail? Robustness, a system's stability, and resilience, the ability to return to a stable state, are key concepts that span multiple disciplines within and outside the biological sciences. Discovering and applying common rules that govern the robustness and resilience of biological systems is a critical step toward creating solutions for species survival in the face of climate change, as well as the for the ever-increasing need for food, health, and energy for human populations. We propose that network theory provides a framework for universal scalable mathematical models to describe robustness and resilience and the relationship between them, and hypothesize that resilience at lower organization levels contribute to robust systems. Insightful models of biological systems can be generated by quantifying the mechanisms of redundancy, diversity, and connectivity of networks, from biochemical processes to ecosystems. These models provide pathways towards understanding how evolvability can both contribute to and result from robustness and resilience under dynamic conditions. We now have an abundance of data from model and non-model systems and the technological and computational advances for studying complex systems. Several conceptual and policy advances will allow the research community to elucidate the rules of robustness and resilience. Conceptually, a common language and data structure that can be applied across levels of biological organization needs to be developed. Policy advances such as cross-disciplinary funding mechanisms, access to affordable computational capacity, and the integration of network theory and computer science within the standard biological science curriculum will provide the needed research environments. This new understanding of biological systems will allow us to derive ever more useful forecasts of biological behaviors and revolutionize the engineering of biological systems that can survive changing environments or disease, navigate the deepest oceans, or sustain life throughout the solar system.


Subject(s)
Climate Change , Ecosystem , Animals , Biology , Oceans and Seas
12.
Biophys Rep (N Y) ; 1(2): None, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34939047

ABSTRACT

Mapping DNA damage and its repair has immense potential in understanding environmental exposures, their genotoxicity, and their impact on human health. Monitoring changes in genomic stability also aids in the diagnosis of numerous DNA-related diseases, such as cancer, and assists in monitoring their progression and prognosis. Developments in recent years have enabled unprecedented sensitivity in quantifying the global DNA damage dose in cells via fluorescence-based analysis down to the single-molecule level. However, genome-wide maps of DNA damage distribution are challenging to produce. Here, we describe the localization of DNA damage and repair loci by repair-assisted damage detection sequencing (RADD-seq). Based on the enrichment of damage lesions coupled with a pull-down assay and followed by next-generation sequencing, this method is easy to perform and can produce compelling results with minimal coverage. RADD-seq enables the localization of both DNA damage and repair sites for a wide range of single-strand damage types. Using this technique, we created a genome-wide map of the oxidation DNA damage lesion 8-oxo-7,8-dihydroguanine before and after repair. Oxidation lesions were heterogeneously distributed along the human genome, with less damage occurring in tight chromatin regions. Furthermore, we showed repair is prioritized for highly expressed, essential genes and in open chromatin regions. RADD-seq sheds light on cellular repair mechanisms and is capable of identifying genomic hotspots prone to mutation.

13.
Int J Mol Sci ; 22(14)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34299059

ABSTRACT

BACKGROUND: Doxorubicin (Dox) is a first-line treatment for triple negative breast cancer (TNBC), but its use may be limited by its cardiotoxicity mediated by the production of reactive oxygen species. We evaluated whether vitamin D may prevent Dox-induced cardiotoxicity in a mouse TNBC model. METHODS: Female Balb/c mice received rodent chow with vitamin D3 (1500 IU/kg; vehicle) or chow supplemented with additional vitamin D3 (total, 11,500 IU/kg). the mice were inoculated with TNBC tumors and treated with intraperitoneal Dox (6 or 10 mg/kg). Cardiac function was evaluated with transthoracic echocardiography. The cardiac tissue was evaluated with immunohistochemistry and immunoblot for levels of 4-hydroxynonenal, NAD(P)H quinone oxidoreductase (NQO1), C-MYC, and dynamin-related protein 1 (DRP1) phosphorylation. RESULTS: At 15 to 18 days, the mean ejection fraction, stroke volume, and fractional shortening were similar between the mice treated with vitamin D + Dox (10 mg/kg) vs. vehicle but significantly greater in mice treated with vitamin D + Dox (10 mg/kg) vs. Dox (10 mg/kg). Dox (10 mg/kg) increased the cardiac tissue levels of 4-hydroxynonenal, NQO1, C-MYC, and DRP1 phosphorylation at serine 616, but these increases were not observed with vitamin D + Dox (10 mg/kg). A decreased tumor volume was observed with Dox (10 mg/kg) and vitamin D + Dox (10 mg/kg). CONCLUSIONS: Vitamin D supplementation decreased Dox-induced cardiotoxicity by decreasing the reactive oxygen species and mitochondrial damage, and did not decrease the anticancer efficacy of Dox against TNBC.


Subject(s)
Cardiotoxicity/prevention & control , Cytoprotection/drug effects , Doxorubicin/toxicity , Protective Agents/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Vitamin D/pharmacology , Vitamins/pharmacology , Animals , Antibiotics, Antineoplastic/toxicity , Cardiotoxicity/etiology , Cardiotoxicity/pathology , Female , Mice , Mice, Inbred BALB C , Triple Negative Breast Neoplasms/chemically induced , Triple Negative Breast Neoplasms/pathology
14.
Int J Mol Sci ; 22(11)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067421

ABSTRACT

Base Excision Repair (BER) addresses base lesions and abasic sites induced by exogenous and endogenous stressors. X-ray cross complementing group 1 (XRCC1) functions as a scaffold protein in BER and single-strand break repair (SSBR), facilitating and coordinating repair through its interaction with a host of critical repair proteins. Alterations of XRCC1 protein and gene expression levels are observed in many cancers, including colorectal, ovarian, and breast cancer. While increases in the expression level of XRCC1 are reported, the transcription factors responsible for this up-regulation are not known. In this study, we identify the signal transducer and activator of transcription 3 (STAT3) as a novel regulator of XRCC1 through chromatin immunoprecipitation. Activation of STAT3 through phosphorylation at Y705 by cytokine (IL-6) signaling increases the expression of XRCC1 and the occupancy of STAT3 within the XRCC1 promoter. In triple negative breast cancer, the constitutive activation of STAT3 upregulates XRCC1 gene and protein expression levels. Increased expression of XRCC1 is associated with aggressiveness and resistance to DNA damaging chemotherapeutics. Thus, we propose that activated STAT3 regulates XRCC1 under stress and growth conditions, but constitutive activation in cancers results in dysregulation of XRCC1 and subsequently BER and SSBR.


Subject(s)
Promoter Regions, Genetic/genetics , STAT3 Transcription Factor/genetics , Triple Negative Breast Neoplasms/genetics , X-ray Repair Cross Complementing Protein 1/genetics , Cell Line , Cell Line, Tumor , DNA Breaks, Single-Stranded , DNA Damage/genetics , DNA Repair/genetics , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , Interleukin-6/genetics , Phosphorylation/genetics , Up-Regulation/genetics
15.
Biology (Basel) ; 10(5)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946684

ABSTRACT

Programmed death ligand-1 (PD-L1) inhibitors are currently under investigation as a potential treatment option for ovarian cancer. Although this therapy has shown promise, its efficacy is highly variable among patients. Evidence suggests that genomic instability influences the expression of PD-L1, but little is known about this relationship in ovarian cancer. To examine the relationship between PD-L1 expression and genomic instability, we measured DNA damage using Repair Assisted Damage Detection (RADD). We then correlated the presence of persistent DNA damage in the ovarian tumor with protein expression of PD-L1 using immunohistochemistry. Ovarian tumors showed a high prevalence of oxidative DNA damage. As the level of oxidative DNA damage increased, we saw a significant correlation with PD-L1 expression. The highest correlation between DNA damage and PD-L1 expression was observed for mucinous ovarian tumors (r = 0.82), but a strong correlation was also observed for high grade serous and endometrioid tumors (r = 0.67 and 0.69, respectively). These findings link genomic instability to PD-L1 protein expression in ovarian cancer and suggest that persistent DNA damage can be used as a potential biomarker for patient selection for immunotherapy treatment.

16.
ACS Chem Biol ; 16(4): 604-614, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33784074

ABSTRACT

All life forms require nicotinamide adenine dinucleotide, NAD+, and its reduced form NADH. They are redox partners in hundreds of cellular enzymatic reactions. Changes in the intracellular levels of total NAD (NAD+ + NADH) and the (NAD+/NADH) ratio can cause cellular dysfunction. When not present in protein complexes, NADH and its phosphorylated form NADPH degrade through intricate mechanisms. Replenishment of a declining total NAD pool can be achieved with biosynthetic precursors that include one of the reduced forms of nicotinamide riboside (NR+), NRH. NRH, like NADH and NADPH, is prone to degradation via oxidation, hydration, and isomerization and, as such, is an excellent model compound to rationalize the nonenzymatic metabolism of NAD(P)H in a biological context. Here, we report on the stability of NRH and its propensity to isomerize and irreversibly degrade. We also report the preparation of two of its naturally occurring isomers, their chemical stability, their reactivity toward NRH-processing enzymes, and their cell-specific cytotoxicity. Furthermore, we identify a mechanism by which NRH degradation causes covalent peptide modifications, a process that could expose a novel type of NADH-protein modifications and correlate NADH accumulation with "protein aging." This work highlights the current limitations in detecting NADH's endogenous catabolites and in establishing the capacity for inducing cellular dysfunction.


Subject(s)
Niacinamide/analogs & derivatives , Pyridinium Compounds/chemistry , Isomerism , NAD/chemistry , Niacinamide/chemistry , Oxidation-Reduction
17.
Int J Mol Sci ; 22(3)2021 Jan 24.
Article in English | MEDLINE | ID: mdl-33498933

ABSTRACT

As catabolites of nicotinamide possess physiological relevance, pyridones are often included in metabolomics measurements and associated with pathological outcomes in acute kidney injury (AKI). Pyridones are oxidation products of nicotinamide, its methylated form, and its ribosylated form. While they are viewed as markers of over-oxidation, they are often wrongly reported or mislabeled. To address this, we provide a comprehensive characterization of these catabolites of vitamin B3, justify their nomenclature, and differentiate between the biochemical pathways that lead to their generation. Furthermore, we identify an enzymatic and a chemical process that accounts for the formation of the ribosylated form of these pyridones, known to be cytotoxic. Finally, we demonstrate that the ribosylated form of one of the pyridones, the 4-pyridone-3-carboxamide riboside (4PYR), causes HepG3 cells to die by autophagy; a process that occurs at concentrations that are comparable to physiological concentrations of this species in the plasma in AKI patients.


Subject(s)
NAD/metabolism , Niacinamide/metabolism , Pyridones/metabolism , Autophagy , Cell Line, Tumor , HEK293 Cells , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/physiopathology , Pyridones/chemistry , Pyridones/pharmacology , Pyridones/therapeutic use
18.
Environ Mol Mutagen ; 62(3): 185-202, 2021 03.
Article in English | MEDLINE | ID: mdl-33496975

ABSTRACT

Dihydroxyacetone (DHA) is a three-carbon sugar that is the active ingredient in sunless tanning products and a by-product of electronic cigarette (e-cigarette) combustion. Increased use of sunless tanning products and e-cigarettes has elevated exposures to DHA through inhalation and absorption. Studies have confirmed that DHA is rapidly absorbed into cells and can enter into metabolic pathways following phosphorylation to dihydroxyacetone phosphate (DHAP), a product of fructose metabolism. Recent reports have suggested metabolic imbalance and cellular stress results from DHA exposures. However, the impact of elevated exposure to DHA on human health is currently under-investigated. We propose that exogenous exposures to DHA increase DHAP levels in cells and mimic fructose exposures to produce oxidative stress, mitochondrial dysfunction, and gene and protein expression changes. Here, we review cell line and animal model exposures to fructose to highlight similarities in the effects produced by exogenous exposures to DHA. Given the long-term health consequences of fructose exposure, this review emphasizes the pressing need to further examine DHA exposures from sunless tanning products and e-cigarettes.


Subject(s)
Dihydroxyacetone Phosphate/metabolism , Dihydroxyacetone/toxicity , Mitochondria/genetics , Oxidative Stress/drug effects , Dihydroxyacetone/metabolism , Fructose/toxicity , Humans , Metabolic Networks and Pathways/genetics , Mitochondria/drug effects , Mitochondria/pathology , Oxidative Stress/genetics , Phosphorylation
19.
PLoS One ; 15(11): e0242174, 2020.
Article in English | MEDLINE | ID: mdl-33166357

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+), the essential cofactor derived from vitamin B3, is both a coenzyme in redox enzymatic processes and substrate in non-redox events; processes that are intimately implicated in all essential bioenergetics. A decrease in intracellular NAD+ levels is known to cause multiple metabolic complications and age-related disorders. One NAD+ precursor is dihydronicotinamide riboside (NRH), which increases NAD+ levels more potently in both cultured cells and mice than current supplementation strategies with nicotinamide riboside (NR), nicotinamide mononucleotide (NMN) or vitamin B3 (nicotinamide and niacin). However, the consequences of extreme boosts in NAD+ levels are not fully understood. Here, we demonstrate the cell-specific effects of acute NRH exposure in mammalian cells. Hepatocellular carcinoma (HepG3) cells show dose-dependent cytotoxicity when supplemented with 100-1000 µM NRH. Cytotoxicity was not observed in human embryonic kidney (HEK293T) cells over the same dose range of NRH. PUMA and BAX mediate the cell-specific cytotoxicity of NRH in HepG3. When supplementing HepG3 with 100 µM NRH, a significant increase in ROS was observed concurrent with changes in the NAD(P)H and GSH/GSSG pools. NRH altered mitochondrial membrane potential, increased mitochondrial superoxide formation, and induced mitochondrial DNA damage in those cells. NRH also caused metabolic dysregulation, altering mitochondrial respiration. Altogether, we demonstrated the detrimental consequences of an extreme boost of the total NAD (NAD+ + NADH) pool through NRH supplementation in HepG3. The cell-specific effects are likely mediated through the different metabolic fate of NRH in these cells, which warrants further study in other systemic models.


Subject(s)
NAD/analogs & derivatives , Oxidative Stress , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Glutathione/metabolism , HEK293 Cells , Humans , Membrane Potential, Mitochondrial , NAD/toxicity , NADP/metabolism , Proto-Oncogene Proteins/metabolism , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/metabolism
20.
DNA Repair (Amst) ; 93: 102922, 2020 09.
Article in English | MEDLINE | ID: mdl-33087263

ABSTRACT

Base excision repair (BER) addresses the numerous base lesions and strand breaks induced by exogenous and endogenous stressors daily. The complexity and importance of BER requires careful regulation of basal levels of these proteins and inducible responses following DNA damage. Several reports have noted the dysregulation of BER proteins and defects in BER capacity in cancer. Modulated gene and protein expression of several BER proteins, including APE1, PARP1, POL ß, and XRCC1, have been observed in breast cancer. Overexpression of these factors has been associated with chemoresistance and cancer aggressiveness, but the regulatory mechanisms that drive overexpression have not been defined. Here, we review the known transcriptional regulators of these key BER proteins and examine potential mechanisms that may drive overexpression in breast cancer.


Subject(s)
Breast Neoplasms/genetics , DNA Repair Enzymes/genetics , DNA Repair/genetics , Gene Expression Regulation, Neoplastic , Transcription, Genetic , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...