Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Glycobiology ; 31(7): 762-771, 2021 08 07.
Article in English | MEDLINE | ID: mdl-33554253

ABSTRACT

Recombinant immunoglobulins (rIgGs) have become increasingly important as therapeutic agents and diagnostic tools in recent years. Genetic engineering allows the introduction of non-natural features such as the Sortase motif for site-directed labeling. In this study, the enzyme Sortase A (SrtA) was used for the proteolytic cleavage of rIgGs to produce their biotinylated Fab fragments by locating the cleavage site close to the hinge region. However, SrtA cleavage of engineered rabbit IgGs (rRb-IgGs) derived from human embryonic kidney (HEK) 293 cells showed significantly lower yields compared with their mouse counterparts. Nonrecombinant Rb-IgGs have N- and O-glycans, and the presence of O-glycans close to the hinge region of the rRb-IgGs might affect the susceptibility of these antibodies to SrtA cleavage. In addition, the glycosylation pattern of rIgGs differs depending on the host cell used for expression. Therefore, we analyzed the N- and O-glycans of various rRb-IgGs expressed in HEK293 cells, detecting and quantifying 13 different N-glycan and 3 different O-glycan structures. The distribution of the different detected glycoforms in our rRb-IgG N-glycan analysis is in agreement with previous studies on recombinant human IgG N-glycans, confirming the hypothesis that the host cell defines the glycosylation of the recombinant produced IgGs. O-glycosylation could be mapped onto the threonine residue within the hinge region sequence XPTCPPPX, as already described previously for nonrecombinant Rb-IgGs. Substitution of this threonine allowed an almost complete Fab fragment cleavage. Therefore, we could confirm the hypothesis that the O-glycans affect the SrtA activity, probably due to steric hindrance.


Subject(s)
Immunoglobulin G , Peptide Hydrolases , Animals , Glycosylation , HEK293 Cells , Humans , Immunoglobulin G/chemistry , Mice , Polysaccharides/chemistry , Rabbits
2.
MAbs ; 7(5): 891-900, 2015.
Article in English | MEDLINE | ID: mdl-26000623

ABSTRACT

Oxidation of methionine (Met) residues is one of several chemical degradation pathways for recombinant IgG1 antibodies. Studies using several methodologies have indicated that Met oxidation in the constant IgG1 domains affects in vitro interaction with human neonatal Fc (huFcRn) receptor, which is important for antibody half-life. Here, a completely new approach to investigating the effect of oxidative stress conditions has been applied. Quantitative ultra-performance liquid chromatography mass spectrometry (MS) peptide mapping, classical surface plasmon resonance and the recently developed FcRn column chromatography were combined with the new fast-growing approach of native MS as a near native state protein complex analysis in solution. Optimized mass spectrometric voltage and pressure conditions were applied to stabilize antibody/huFcRn receptor complexes in the gas phase for subsequent native MS experiments with oxidized IgG1 material. This approach demonstrated a linear correlation between quantitative native MS and IgG-FcRn functional analysis. In our study, oxidation of the heavy chain Met-265 resulted in a stepwise reduction of mAb3/huFcRn receptor complex formation. Remarkably, a quantitative effect of the heavy chain Met-265 oxidation on relative binding capacity was only detected for doubly oxidized IgG1, whereas IgG1 with only one oxidized heavy chain Met-265 was not found to significantly affect IgG1 binding to huFcRn. Thus, mono-oxidized IgG1 heavy chain Met-265 most likely does not represent a critical quality attribute for pharmacokinetics.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Immunoglobulin G/metabolism , Mass Spectrometry/methods , Oxidation-Reduction , Receptors, Fc/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Chromatography, Liquid , Humans , Immunoglobulin G/chemistry , Peptide Mapping , Surface Plasmon Resonance
3.
MAbs ; 7(4): 732-42, 2015.
Article in English | MEDLINE | ID: mdl-25996192

ABSTRACT

To monitor the Fc glycosylation of therapeutic immunoglobulin G in bioprocess development, product characterization and release analytics, reliable techniques for glycosylation analysis are needed. Several analytical methods are suitable for this application. We recently presented results comparing detection methods for glycan analysis that are separation-based, but did not include mass spectrometry (MS). In the study reported here, we comprehensively compared MS-based methods for Fc glycosylation profiling of an IgG biopharmaceutical. A therapeutic antibody reference material was analyzed 6-fold on 2 different days, and the methods investigated were compared with respect to precision, accuracy, throughput and analysis time. Emphasis was put on the detection and quantitation of sialic acid-containing glycans. Eleven MS methods were compared to hydrophilic interaction liquid chromatography of 2-aminobenzamide labeled glycans with fluorescence detection, which served as a reference method and was also used in the first part of the study. The methods compared include electrospray MS of the heavy chain and Fc part after limited digestion, liquid chromatography MS of a tryptic digest, porous graphitized carbon chromatography MS of released glycans, electrospray MS of glycopeptides, as well as matrix assisted laser desorption ionization MS of glycans and glycopeptides. Most methods showed excellent precision and accuracy. Some differences were observed with regard to the detection and quantitation of low abundant glycan species like the sialylated glycans and the amount of artefacts due to in-source decay.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Sialic Acids/analysis , Animals , CHO Cells , Cricetinae , Cricetulus , Glycosylation , Humans , Recombinant Proteins/chemistry
4.
MAbs ; 6(2): 327-39, 2014.
Article in English | MEDLINE | ID: mdl-24441081

ABSTRACT

Modifications like asparagine deamidation, aspartate isomerization, methionine oxidation, and lysine glycation are typical degradations for recombinant antibodies. For the identification and functional evaluation of antibody critical quality attributes (CQAs) derived from chemical modifications in the complementary-determining regions (CDRs) and the conserved regions, an approach employing specific stress conditions, elevated temperatures, pH, oxidizing agents, and forced glycation with glucose incubation, was applied. The application of the specific stress conditions combined with ion exchange chromatography, proteolytic peptide mapping, quantitative liquid chromatography mass spectrometry, and functional evaluation by surface plasmon resonance analysis was adequate to identify and functionally assess chemical modification sites in the CDRs of a recombinant IgG1. LC-Met-4, LC-Asn-30/31, LC-Asn-92, HC-Met-100c, and HC Lys-33 were identified as potential CQAs. However, none of the assessed degradation products led to a complete loss of functionality if only one light or heavy chain of the native antibody was affected.


Subject(s)
Complementarity Determining Regions/metabolism , Glycation End Products, Advanced/metabolism , Immunoglobulin G/metabolism , Peptide Mapping/methods , Recombinant Proteins/metabolism , Chromatography, Ion Exchange , Chromatography, Liquid , Hot Temperature , Humans , Hydrogen-Ion Concentration , Mass Spectrometry , Oxidative Stress , Protein Processing, Post-Translational , Proteolysis , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...