Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 143: 105193, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35123140

ABSTRACT

Correct rider oscillation and position are the basics for a good horseback riding performance. In this paper, we propose a framework for the automatic analysis of athletes behaviour based on cluster analysis. Two groups of athletes (riders vs non-riders) were assigned to a horseback riding simulator exercise. The participants exercised four different incremental horse oscillation frequencies. This paper studies the postural coordination, by computing the different discrete relative phases of head-horse, elbow-horse and trunk-horse oscillations. Two clustering algorithms are then applied to automatically identify the change of rider and non-rider behaviour in terms of postural coordination. The results showed that the postural coordination was influenced by the level of rider expertise. More diverse behaviour was observed for non-riders. At the opposite, riders produced lower postural displacements and deployed more efficient postural control. The postural coordination for both groups was also influenced by the oscillation frequencies.

2.
Front Psychol ; 13: 961435, 2022.
Article in English | MEDLINE | ID: mdl-36817389

ABSTRACT

Recent research highlighted the interest in 1) investigating the effect of variable practice on the dynamics of learning and 2) modeling the dynamics of motor skill learning to enhance understanding of individual pathways learners. Such modeling has not been suitable for predicting future performance, both in terms of retention and transfer to new tasks. The present study attempted to quantify, by means of a machine learning algorithm, the prediction of skill transfer for three practice conditions in a climbing task: constant practice (without any modifications applied during learning), imposed variable practice (with graded contextual modifications, i.e., the variants of the climbing route), and self-controlled variable practice (participants were given some control over their variant practice schedule). The proposed pipeline allowed us to measure the fitness of the test to the dataset, i.e., the ability of the dataset to be predictive of the skill transfer test. Behavioral data are difficult to model with statistical learning and tend to be 1) scarce (too modest data sample in comparison with the machine learning standards) and 2) flawed (data tend to contain voids in measurements). Despite these adversities, we were nevertheless able to develop a machine learning pipeline for behavioral data. The main findings demonstrate that the level of learning transfer varies, according to the type of practice that the dynamics pertain: we found that the self-controlled condition is more predictive of generalization ability in learners than the constant condition.

3.
Appl Intell (Dordr) ; 52(1): 71-80, 2022.
Article in English | MEDLINE | ID: mdl-34764595

ABSTRACT

Common compartmental modeling for COVID-19 is based on a priori knowledge and numerous assumptions. Additionally, they do not systematically incorporate asymptomatic cases. Our study aimed at providing a framework for data-driven approaches, by leveraging the strengths of the grey-box system theory or grey-box identification, known for its robustness in problem solving under partial, incomplete, or uncertain data. Empirical data on confirmed cases and deaths, extracted from an open source repository were used to develop the SEAIRD compartment model. Adjustments were made to fit current knowledge on the COVID-19 behavior. The model was implemented and solved using an Ordinary Differential Equation solver and an optimization tool. A cross-validation technique was applied, and the coefficient of determination R 2 was computed in order to evaluate the goodness-of-fit of the model. Key epidemiological parameters were finally estimated and we provided the rationale for the construction of SEAIRD model. When applied to Brazil's cases, SEAIRD produced an excellent agreement to the data, with an R 2 ≥ 90%. The probability of COVID-19 transmission was generally high (≥ 95%). On the basis of a 20-day modeling data, the incidence rate of COVID-19 was as low as 3 infected cases per 100,000 exposed persons in Brazil and France. Within the same time frame, the fatality rate of COVID-19 was the highest in France (16.4%) followed by Brazil (6.9%), and the lowest in Russia (≤ 1%). SEAIRD represents an asset for modeling infectious diseases in their dynamical stable phase, especially for new viruses when pathophysiology knowledge is very limited. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10489-021-02379-2.

4.
IEEE Trans Neural Netw Learn Syst ; 27(3): 636-47, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25910256

ABSTRACT

We introduce a novel algorithm for solving learning problems where both the loss function and the regularizer are nonconvex but belong to the class of difference of convex (DC) functions. Our contribution is a new general purpose proximal Newton algorithm that is able to deal with such a situation. The algorithm consists in obtaining a descent direction from an approximation of the loss function and then in performing a line search to ensure a sufficient descent. A theoretical analysis is provided showing that the iterates of the proposed algorithm admit as limit points stationary points of the DC objective function. Numerical experiments show that our approach is more efficient than the current state of the art for a problem with a convex loss function and a nonconvex regularizer. We have also illustrated the benefit of our algorithm in high-dimensional transductive learning problem where both the loss function and regularizers are nonconvex.

5.
IEEE Trans Neural Netw ; 22(8): 1307-20, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21813358

ABSTRACT

Recently, there has been much interest around multitask learning (MTL) problem with the constraints that tasks should share a common sparsity profile. Such a problem can be addressed through a regularization framework where the regularizer induces a joint-sparsity pattern between task decision functions. We follow this principled framework and focus on l(p)-l(q) (with 0 ≤ p ≤ 1 and 1 ≤ q ≤ 2) mixed norms as sparsity-inducing penalties. Our motivation for addressing such a larger class of penalty is to adapt the penalty to a problem at hand leading thus to better performances and better sparsity pattern. For solving the problem in the general multiple kernel case, we first derive a variational formulation of the l(1)-l(q) penalty which helps us in proposing an alternate optimization algorithm. Although very simple, the latter algorithm provably converges to the global minimum of the l(1)-l(q) penalized problem. For the linear case, we extend existing works considering accelerated proximal gradient to this penalty. Our contribution in this context is to provide an efficient scheme for computing the l(1)-l(q) proximal operator. Then, for the more general case, when , we solve the resulting nonconvex problem through a majorization-minimization approach. The resulting algorithm is an iterative scheme which, at each iteration, solves a weighted l(1)-l(q) sparse MTL problem. Empirical evidences from toy dataset and real-word datasets dealing with brain-computer interface single-trial electroencephalogram classification and protein subcellular localization show the benefit of the proposed approaches and algorithms.


Subject(s)
Artificial Intelligence , Linear Models , Psychomotor Performance , Databases, Factual/classification , Pattern Recognition, Automated/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...