Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 16(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893234

ABSTRACT

This review delves into the enzymatic processes governing the initial stages of glycerophospholipid (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) and triacylglycerol synthesis. The key enzymes under scrutiny include GPAT and AGPAT. Additionally, as most AGPATs exhibit LPLAT activity, enzymes participating in the Lands cycle with similar functions are also covered. The review begins by discussing the properties of these enzymes, emphasizing their specificity in enzymatic reactions, notably the incorporation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid and docosahexaenoic acid (DHA) into phospholipids. The paper sheds light on the intricate involvement of these enzymes in various diseases, including obesity, insulin resistance, and cancer. To underscore the relevance of these enzymes in cancer processes, a bioinformatics analysis was conducted. The expression levels of the described enzymes were correlated with the overall survival of patients across 33 different types of cancer using the GEPIA portal. This review further explores the potential therapeutic implications of inhibiting these enzymes in the treatment of metabolic diseases and cancer. By elucidating the intricate enzymatic pathways involved in lipid synthesis and their impact on various pathological conditions, this paper contributes to a comprehensive understanding of these processes and their potential as therapeutic targets.

2.
Int J Mol Sci ; 24(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37373050

ABSTRACT

Neuroinflammation is one of the postulated mechanisms for Pb neurotoxicity. However, the exact molecular mechanisms responsible for its pro-inflammatory effect are not fully elucidated. In this study, we examined the role of glial cells in neuroinflammation induced by Pb exposure. We investigated how microglia, a type of glial cell, responded to the changes caused by perinatal exposure to Pb by measuring the expression of Iba1 at the mRNA and protein levels. To assess the state of microglia, we analyzed the mRNA levels of specific markers associated with the cytotoxic M1 phenotype (Il1b, Il6, and Tnfa) and the cytoprotective M2 phenotype (Arg1, Chi3l1, Mrc1, Fcgr1a, Sphk1, and Tgfb1). Additionally, we measured the concentration of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α). To assess the reactivity and functionality status of astrocytes, we analyzed the GFAP (mRNA expression and protein concentration) as well as glutamine synthase (GS) protein level and activity. Using an electron microscope, we assessed ultrastructural abnormalities in the examined brain structures (forebrain cortex, cerebellum, and hippocampus). In addition, we measured the mRNA levels of Cxcl1 and Cxcl2, and their receptor, Cxcr2. Our data showed that perinatal exposure to Pb at low doses affected both microglia and astrocyte cells' status (their mobilization, activation, function, and changes in gene expression profile) in a brain-structure-specific manner. The results suggest that both microglia and astrocytes represent a potential target for Pb neurotoxicity, thus being key mediators of neuroinflammation and further neuropathology evoked by Pb poisoning during perinatal brain development.


Subject(s)
Astrocytes , Microglia , Pregnancy , Female , Humans , Astrocytes/metabolism , Microglia/metabolism , Lead/metabolism , Neuroinflammatory Diseases , Cytokines/metabolism , Prosencephalon/metabolism , RNA, Messenger/metabolism
3.
Int J Mol Sci ; 24(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37108467

ABSTRACT

Tuberous sclerosis complex (TSC) is a rare genetic multisystem disorder caused by loss-of-function mutations in the tumour suppressors TSC1/TSC2, both of which are negative regulators of the mammalian target of rapamycin (mTOR) kinase. Importantly, mTOR hyperactivity seems to be linked with the pathobiology of autism spectrum disorders (ASD). Recent studies suggest the potential involvement of microtubule (MT) network dysfunction in the neuropathology of "mTORopathies", including ASD. Cytoskeletal reorganization could be responsible for neuroplasticity disturbances in ASD individuals. Thus, the aim of this work was to study the effect of Tsc2 haploinsufficiency on the cytoskeletal pathology and disturbances in the proteostasis of the key cytoskeletal proteins in the brain of a TSC mouse model of ASD. Western-blot analysis indicated significant brain-structure-dependent abnormalities in the microtubule-associated protein Tau (MAP-Tau), and reduced MAP1B and neurofilament light (NF-L) protein level in 2-month-old male B6;129S4-Tsc2tm1Djk/J mice. Alongside, pathological irregularities in the ultrastructure of both MT and neurofilament (NFL) networks as well as swelling of the nerve endings were demonstrated. These changes in the level of key cytoskeletal proteins in the brain of the autistic-like TSC mice suggest the possible molecular mechanisms responsible for neuroplasticity alterations in the ASD brain.


Subject(s)
Autism Spectrum Disorder , Tuberous Sclerosis , Mice , Animals , Male , Autism Spectrum Disorder/genetics , Tuberous Sclerosis/genetics , Tuberous Sclerosis/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Cytoskeletal Proteins/genetics , Microtubules/metabolism , Mammals/metabolism
4.
Biomedicines ; 10(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36551785

ABSTRACT

Autism spectrum disorders (ASD) are neurodevelopmental diseases characterised by deficits in social communication, restricted interests, and repetitive behaviours. The growing body of evidence points to a role for cerebellar changes in ASD pathology. Some of the findings suggest that not only motor problems but also social deficits, repetitive behaviours, and mental inflexibility associated with ASD are connected with damage to the cerebellum. However, the understanding of this brain structure's functions in ASD pathology needs future investigations. Therefore, in this study, we generated a rodent model of ASD through a single prenatal administration of valproic acid (VPA) into pregnant rats, followed by cerebellar morphological studies of the offspring, focusing on the alterations of key cytoskeletal elements. The expression (Western blot) of α/ß-tubulin and the major neuronal MT-associated proteins (MAP) such as MAP-Tau and MAP1B, MAP2, MAP6 (STOP) along with actin-crosslinking αII-spectrin and neurofilament light polypeptide (NF-L) was investigated. We found that maternal exposure to VPA induces a significant decrease in the protein levels of α/ß-tubulin, MAP-Tau, MAP1B, MAP2, and αII-spectrin. Moreover, excessive MAP-Tau phosphorylation at (Ser396) along with key Tau-kinases activation was indicated. Immunohistochemical staining showed chromatolysis in the cerebellum of autistic-like rats and loss of Purkinje cells shedding light on one of the possible molecular mechanisms underpinning neuroplasticity alterations in the ASD brain.

5.
Int J Mol Sci ; 23(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35457023

ABSTRACT

This review describes the role of CXCL1, a chemokine crucial in inflammation as a chemoattractant for neutrophils, in physiology and in selected major non-cancer diseases. Due to the vast amount of available information, we focus on the role CXCL1 plays in the physiology of bones, bone marrow, muscle and the nervous system. For this reason, we describe its effects on hematopoietic stem cells, myoblasts, oligodendrocyte progenitors and osteoclast precursors. We also present the involvement of CXCL1 in diseases of selected tissues and organs including Alzheimer's disease, epilepsy, herpes simplex virus type 1 (HSV-1) encephalitis, ischemic stroke, major depression, multiple sclerosis, neuromyelitis optica, neuropathic pain, osteoporosis, prion diseases, rheumatoid arthritis, tick-borne encephalitis (TBE), traumatic spinal cord injury and West Nile fever.


Subject(s)
Bone Marrow , Receptors, Interleukin-8B , Astrocytes , Chemokine CXCL1 , Chemokines , Muscles
6.
Int J Mol Sci ; 22(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34639040

ABSTRACT

Chronic (continuous, non-interrupted) hypoxia and cycling (intermittent, transient) hypoxia are two types of hypoxia occurring in malignant tumors. They are both associated with the activation of hypoxia-inducible factor-1 (HIF-1) and nuclear factor κB (NF-κB), which induce changes in gene expression. This paper discusses in detail the mechanisms of activation of these two transcription factors in chronic and cycling hypoxia and the crosstalk between both signaling pathways. In particular, it focuses on the importance of reactive oxygen species (ROS), reactive nitrogen species (RNS) together with nitric oxide synthase, acetylation of HIF-1, and the action of MAPK cascades. The paper also discusses the importance of hypoxia in the formation of chronic low-grade inflammation in cancerous tumors. Finally, we discuss the effects of cycling hypoxia on the tumor microenvironment, in particular on the expression of VEGF-A, CCL2/MCP-1, CXCL1/GRO-α, CXCL8/IL-8, and COX-2 together with PGE2. These factors induce angiogenesis and recruit various cells into the tumor niche, including neutrophils and monocytes which, in the tumor, are transformed into tumor-associated neutrophils (TAN) and tumor-associated macrophages (TAM) that participate in tumorigenesis.


Subject(s)
Hypoxia-Inducible Factor 1/metabolism , Hypoxia/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , Neoplasms/metabolism , Biomarkers , Disease Susceptibility , Enzyme Activation , Humans , Hypoxia/genetics , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/etiology , Inflammation/pathology , Inflammation Mediators/metabolism , Models, Biological , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/etiology , Neoplasms/pathology , Nitric Oxide/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Tumor Microenvironment
7.
Int J Mol Sci ; 22(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34576223

ABSTRACT

Tuberous sclerosis complex (TSC) is a rare, multi-system genetic disease with serious neurological and mental symptoms, including autism. Mutations in the TSC1/TSC2 genes lead to the overactivation of mTOR signalling, which is also linked to nonsyndromic autism. Our aim was to analyse synaptic pathology in a transgenic model of TSC: two-month-old male B6;129S4-Tsc2tm1Djk/J mice with Tsc2 haploinsufficiency. Significant brain-region-dependent alterations in the expression of several synaptic proteins were identified. The most prominent changes were observed in the immunoreactivity of presynaptic VAMP1/2 (ca. 50% increase) and phospho-synapsin-1 (Ser62/67) (ca. 80% increase). Transmission electron microscopy demonstrated serious ultrastructural abnormalities in synapses such as a blurred structure of synaptic density and a significantly increased number of synaptic vesicles. The impairment of synaptic mitochondrial ultrastructure was represented by excessive elongation, swelling, and blurred crista contours. Polyribosomes in the cytoplasm and swollen Golgi apparatus suggest possible impairment of protein metabolism. Moreover, the delamination of myelin and the presence of vacuolar structures in the cell nucleus were observed. We also report that Tsc2+/- mice displayed increased brain weights and sizes. The behavioural analysis demonstrated the impairment of memory function, as established in the novel object recognition test. To summarise, our data indicate serious synaptic impairment in the brains of male Tsc2+/- mice.


Subject(s)
Autism Spectrum Disorder/physiopathology , Synapses , Animals , Animals, Genetically Modified , Autism Spectrum Disorder/genetics , Behavior, Animal , Brain/physiology , Cell Nucleus/metabolism , Cerebellum/metabolism , Cerebral Cortex/metabolism , Densitometry , Haploinsufficiency , Hippocampus/metabolism , Male , Mice , Microscopy, Electron, Transmission , Organ Size , Phosphorylation , RNA, Messenger/metabolism , Recognition, Psychology , Signal Transduction , Tuberous Sclerosis/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics
8.
Front Mol Neurosci ; 14: 660104, 2021.
Article in English | MEDLINE | ID: mdl-34305524

ABSTRACT

Alzheimer's disease (AD) induces time-dependent changes in sphingolipid metabolism, which may affect transcription regulation and neuronal phenotype. We, therefore, analyzed the influence of age, amyloid ß precursor protein (AßPP), and the clinically approved, bioavailable sphingosine-1-phosphate receptor modulator fingolimod (FTY720) on the expression of synaptic proteins. RNA was isolated, reverse-transcribed, and subjected to real-time PCR. Expression of mutant (V717I) AßPP led to few changes at 3 months of age but reduced multiple mRNA coding for synaptic proteins in a 12-month-old mouse brain. Complexin 1 (Cplx1), SNAP25 (Snap25), syntaxin 1A (Stx1a), neurexin 1 (Nrxn1), neurofilament light (Nefl), and synaptotagmin 1 (Syt1) in the hippocampus, and VAMP1 (Vamp1) and neurexin 1 (Nrxn1) in the cortex were all significantly reduced in 12-month-old mice. Post mortem AD samples from the human hippocampus and cortex displayed lower expression of VAMP, synapsin, neurofilament light (NF-L) and synaptophysin. The potentially neuroprotective FTY720 reversed most AßPP-induced changes in gene expression (Cplx1, Stx1a, Snap25, and Nrxn1) in the 12-month-old hippocampus, which is thought to be most sensitive to early neurotoxic insults, but it only restored Vamp1 in the cortex and had no influence in 3-month-old brains. Further study may reveal the potential usefulness of FTY720 in the modulation of deregulated neuronal phenotype in AD brains.

9.
Int J Mol Sci ; 22(6)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33809910

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficient social interaction and communication besides repetitive, stereotyped behaviours. A characteristic feature of ASD is altered dendritic spine density and morphology associated with synaptic plasticity disturbances. Since microtubules (MTs) regulate dendritic spine morphology and play an important role in spine development and plasticity the aim of the present study was to investigate the alterations in the content of neuronal α/ß-tubulin and Tau protein level as well as phosphorylation state in the valproic acid (VPA)-induced rat model of autism. Our results indicated that maternal exposure to VPA induces: (1) decrease the level of α/ß-tubulin along with Tau accumulation in the hippocampus and cerebral cortex; (2) excessive Tau phosphorylation and activation of Tau-kinases: CDK5, ERK1/2, and p70S6K in the cerebral cortex; (3) up-regulation of mTOR kinase-dependent signalling in the hippocampus and cerebral cortex of adolescent rat offspring. Moreover, immunohistochemical staining showed histopathological changes in neurons (chromatolysis) in both analysed brain structures of rats prenatally exposed to VPA. The observed changes in Tau protein together with an excessive decrease in α/ß-tubulin level may suggest destabilization and thus dysfunction of the MT cytoskeleton network, which in consequence may lead to the disturbance in synaptic plasticity and the development of autistic-like behaviours.


Subject(s)
Autistic Disorder/etiology , Autistic Disorder/metabolism , Brain/metabolism , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects , Valproic Acid/adverse effects , tau Proteins/metabolism , Animals , Autistic Disorder/pathology , Biomarkers , Brain/pathology , Disease Susceptibility , Enzyme Activation , Female , Immunohistochemistry , Phosphorylation , Pregnancy , Rats , Signal Transduction , Tubulin/metabolism
10.
Int J Mol Sci ; 21(11)2020 May 31.
Article in English | MEDLINE | ID: mdl-32486485

ABSTRACT

The purinergic P2X7 receptor (P2X7R) belongs to a family of trimeric ion channels that are gated by extracellular adenosine 5'-triphosphate (ATP). Several studies have pointed to a role of P2X7R-dependent signalling in Parkinson's disease (PD)-related neurodegeneration. The pathology of (PD) is characterized by the formation of insoluble alpha-synuclein (α-Syn) aggregates-Lewy bodies, but the mechanisms underlying α-Syn-induced dopaminergic cell death are still partially unclear. Our previous studies indicate that extracellular α-Syn directly interact with neuronal P2X7R and induces intracellular free calcium mobilization in neuronal cells. The main objective of this study was to examine the involvement of P2X7R receptor in α-Syn-induced mitochondrial dysfunction and cell death. We found that P2X7R stimulation is responsible for α-Syn-induced oxidative stress and activation of the molecular pathways of programmed cell death. Exogenous α-Syn treatment led to P2X7R-dependent decrease in mitochondrial membrane potential as well as elevation of mitochondrial ROS production resulting in breakdown of cellular energy production. Moreover, P2X7R-dependent deregulation of AMP-activated protein kinase as well as decrease in parkin protein level could be responsible for α-Syn-induced mitophagy impairment and accumulation of dysfunctional mitochondria. P2X7R might be putative pharmacological targets in molecular mechanism of extracellular α-Syn toxicity.


Subject(s)
Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Mitochondria/pathology , Neuroblastoma/metabolism , Receptors, Purinergic P2X7/metabolism , alpha-Synuclein/metabolism , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/chemistry , Cell Line, Tumor , Cell Survival , Free Radicals , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitophagy , Neurons/metabolism , Oxidation-Reduction , Oxidative Stress , Signal Transduction
11.
Int J Mol Sci ; 21(11)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32521803

ABSTRACT

Maternal immune activation (MIA), induced by infection during pregnancy, is an important risk factor for neuro-developmental disorders, such as autism. Abnormal maternal cytokine signaling may affect fetal brain development and contribute to neurobiological and behavioral changes in the offspring. Here, we examined the effect of lipopolysaccharide-induced MIA on neuro-inflammatory changes, as well as synaptic morphology and key synaptic protein level in cerebral cortex of adolescent male rat offspring. Adolescent MIA offspring showed elevated blood cytokine levels, microglial activation, increased pro-inflammatory cytokines expression and increased oxidative stress in the cerebral cortex. Moreover, pathological changes in synaptic ultrastructure of MIA offspring was detected, along with presynaptic protein deficits and down-regulation of postsynaptic scaffolding proteins. Consequently, ability to unveil MIA-induced long-term alterations in synapses structure and protein level may have consequences on postnatal behavioral changes, associated with, and predisposed to, the development of neuropsychiatric disorders.


Subject(s)
Cerebral Cortex/immunology , Cerebral Cortex/metabolism , Encephalitis/etiology , Encephalitis/metabolism , Immunity , Maternal Exposure , Prenatal Exposure Delayed Effects , Synapses/metabolism , Age Factors , Animals , Autistic Disorder/etiology , Autistic Disorder/metabolism , Autistic Disorder/psychology , Behavior, Animal , Cerebral Cortex/pathology , Disease Models, Animal , Disease Susceptibility , Encephalitis/pathology , Female , Lipopolysaccharides/adverse effects , Maternal Exposure/adverse effects , Oxidative Stress , Phenotype , Pregnancy , Rats
12.
Int J Mol Sci ; 21(10)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443651

ABSTRACT

Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental conditions categorized as synaptopathies. Environmental risk factors contribute to ASD aetiology. In particular, prenatal exposure to the anti-epileptic drug valproic acid (VPA) may increase the risk of autism. In the present study, we investigated the effect of prenatal exposure to VPA on the synaptic morphology and expression of key synaptic proteins in the hippocampus and cerebral cortex of young-adult male offspring. To characterize the VPA-induced autism model, behavioural outcomes, microglia-related neuroinflammation, and oxidative stress were analysed. Our data showed that prenatal exposure to VPA impaired communication in neonatal rats, reduced their exploratory activity, and led to anxiety-like and repetitive behaviours in the young-adult animals. VPA-induced pathological alterations in the ultrastructures of synapses accompanied by deregulation of key pre- and postsynaptic structural and functional proteins. Moreover, VPA exposure altered the redox status and expression of proinflammatory genes in a brain region-specific manner. The disruption of synaptic structure and plasticity may be the primary insult responsible for autism-related behaviour in the offspring. The vulnerability of specific synaptic proteins to the epigenetic effects of VPA may highlight the potential mechanisms by which prenatal VPA exposure generates behavioural changes.


Subject(s)
Autism Spectrum Disorder/chemically induced , Microglia/drug effects , Prenatal Exposure Delayed Effects , Synapses/drug effects , Valproic Acid/adverse effects , Animals , Anticonvulsants/adverse effects , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Female , Inflammation , Male , Microglia/metabolism , Microglia/pathology , Oxidative Stress , Pregnancy , Rats , Synapses/pathology , Valproic Acid/toxicity
13.
Front Mol Neurosci ; 13: 555290, 2020.
Article in English | MEDLINE | ID: mdl-33519375

ABSTRACT

Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders in offspring, but the pathomechanism is largely unknown. The aim of our study was to analyse the molecular mechanisms contributing to synaptic alterations in hippocampi of adolescent rats exposed prenatally to MIA. MIA was evoked in pregnant female rats by i.p. administration of lipopolysaccharide at gestation day 9.5. Hippocampi of offspring (52-53-days-old rats) were analysed using transmission electron microscopy (TEM), qPCR and Western blotting. Moreover, mitochondrial membrane potential, activity of respiratory complexes, and changes in glutathione system were measured. It was found that MIA induced changes in hippocampi morphology, especially in the ultrastructure of synapses, including synaptic mitochondria, which were accompanied by impairment of mitochondrial electron transport chain and decreased mitochondrial membrane potential. These phenomena were in agreement with increased generation of reactive oxygen species, which was evidenced by a decreased reduced/oxidised glutathione ratio and an increased level of dichlorofluorescein (DCF) oxidation. Activation of cyclin-dependent kinase 5, and phosphorylation of glycogen synthase kinase 3ß on Ser9 occurred, leading to its inhibition and, accordingly, to hypophosphorylation of microtubule associated protein tau (MAPT). Abnormal phosphorylation and dysfunction of MAPT, the manager of the neuronal cytoskeleton, harmonised with changes in synaptic proteins. In conclusion, this is the first study demonstrating widespread synaptic changes in hippocampi of adolescent offspring prenatally exposed to MIA.

14.
Int J Mol Sci ; 20(17)2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31443560

ABSTRACT

Extracellular matrix (ECM) molecules that are released by neurons and glial cells form perineuronal nets (PNNs) and modulate many neuronal and glial functions. PNNs, whose structure is still not known in detail, surround cell bodies and dendrites, which leaves free space for synapses to come into contact. A reduction in the expression of many neuronal ECM components adversely affects processes that are associated with synaptic plasticity, learning, and memory. At the same time, increased ECM activity, e.g., as a result of astrogliosis following brain damage or in neuroinflammation, can also have harmful consequences. The therapeutic use of enzymes to attenuate elevated neuronal ECM expression after injury or in Alzheimer's disease has proven to be beneficial by promoting axon growth and increasing synaptic plasticity. Yet, severe impairment of ECM function can also lead to neurodegeneration. Thus, it appears that to ensure healthy neuronal function a delicate balance of ECM components must be maintained. In this paper we review the structure of PNNs and their components, such as hyaluronan, proteoglycans, core proteins, chondroitin sulphate proteoglycans, tenascins, and Hapln proteins. We also characterize the role of ECM in the functioning of the blood-brain barrier, neuronal communication, as well as the participation of PNNs in synaptic plasticity and some clinical aspects of perineuronal net impairment. Furthermore, we discuss the participation of PNNs in brain signaling. Understanding the molecular foundations of the ways that PNNs participate in brain signaling and synaptic plasticity, as well as how they change in physiological and pathological conditions, may help in the development of new therapies for many degenerative and inflammatory diseases of the brain.


Subject(s)
Extracellular Matrix , Homeostasis , Nerve Net , Neuronal Plasticity , Neurons/metabolism , Synapses/physiology , Animals , Biomarkers , Blood-Brain Barrier/metabolism , Humans , Synaptic Transmission
15.
Mol Neurobiol ; 56(1): 125-140, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29681024

ABSTRACT

α-Synuclein (ASN) and parkin, a multifunctional E3 ubiquitin ligase, are two proteins that are associated with the pathophysiology of Parkinson's disease (PD). Excessive release of ASN, its oligomerization, aggregation, and deposition in the cytoplasm contribute to neuronal injury and cell death through oxidative-nitrosative stress induction, mitochondrial impairment, and synaptic dysfunction. In contrast, overexpression of parkin provides protection against cellular stresses and prevents dopaminergic neural cell loss in several animal models of PD. However, the influence of ASN on the function of parkin is largely unknown. Therefore, the aim of this study was to investigate the effect of extracellular ASN oligomers on parkin expression, S-nitrosylation, as well as its activity. For these investigations, we used rat pheochromocytoma (PC12) cell line treated with exogenous oligomeric ASN as well as PC12 cells with parkin overexpression and parkin knock-down. The experiments were performed using spectrophotometric, spectrofluorometric, and immunochemical methods. We found that exogenous ASN oligomers induce oxidative/nitrosative stress leading to parkin S-nitrosylation. Moreover, this posttranslational modification induced the elevation of parkin autoubiquitination and degradation of the protein. The decreased parkin levels resulted in significant cell death, whereas parkin overexpression protected against toxicity induced by extracellular ASN oligomers. We conclude that lowering parkin levels by extracellular ASN may significantly contribute to the propagation of neurodegeneration in PD pathology through accumulation of defective proteins as a consequence of parkin degradation.


Subject(s)
Extracellular Space/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Ubiquitin-Protein Ligases/metabolism , alpha-Synuclein/metabolism , Animals , Cell Survival , Homeostasis , Humans , Nitric Oxide/metabolism , Nitrosation , Oxidative Stress , PC12 Cells , Protein Multimerization , Rats , Ubiquitination , alpha-Synuclein/chemistry , alpha-Synuclein/ultrastructure
16.
J Alzheimers Dis ; 62(1): 279-291, 2018.
Article in English | MEDLINE | ID: mdl-29439324

ABSTRACT

Urea cycle enzymes may play important yet poorly characterized roles in Alzheimer's disease (AD). Our previous results showed that amyloid-ß (Aß) affects urea cycle enzymes in rat pheochromocytoma (PC12) cells. The aim of the present study was to investigate the changes in arginases, other urea cycle enzymes, and nitric oxide synthases (NOSs) in PC12 cells transfected with AßPP bearing the double 'Swedish' mutation (APPsw, K670M/N671L) and in postmortem sporadic AD brain hippocampus; the mutation intensifies Aß production and strongly associates with AD neuropathology. mRNA expression was analyzed using real-time PCR in cell cultures and DNA microarrays in hippocampal CA1 area of human AD brains. Arginase activity was measured spectrophotometrically, and arginine, ornithine, and citrulline levels by high-performance liquid chromatography. Our data demonstrated that the expression and activity of arginases (Arg1 and Arg2), as well as the expression of argininosuccinate synthase (Ass) were significantly reduced in APPsw cells compared to control. However, argininosuccinate lyase (Asl) was upregulated in APPsw cells. Real-time PCR analysis revealed significant elevation of neuronal nitric oxide synthase (Nnos) mRNA in APPsw cells, without changes in the endothelial Enos, whereas inducible Inos was undetectable. The changes were found to follow closely those observed in the human hippocampal CA1 region of sporadic AD brains. The changes in enzyme expression were accompanied in APPsw cells by significantly elevated citrulline, ornithine, and arginine. Our findings demonstrate that AßPP/Aß alters arginine metabolism and induces a shift of cellular homeostasis that may support the oxidative/nitrosative stress observed in AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Arginase/metabolism , CA1 Region, Hippocampal/metabolism , Nitric Oxide Synthase/metabolism , Urea/metabolism , Alzheimer Disease/pathology , Animals , Arginine/metabolism , Argininosuccinate Lyase/metabolism , Argininosuccinate Synthase/metabolism , CA1 Region, Hippocampal/pathology , Gene Expression Regulation , Homeostasis/physiology , Humans , PC12 Cells , RNA, Messenger/metabolism , Rats
17.
J Neuroinflammation ; 15(1): 1, 2018 Jan 04.
Article in English | MEDLINE | ID: mdl-29301548

ABSTRACT

BACKGROUND: Cyclin-dependent kinase 5 (Cdk5) belongs to the family of proline-directed serine/threonine kinases and plays a critical role in neuronal differentiation, migration, synaptogenesis, plasticity, neurotransmission and apoptosis. The deregulation of Cdk5 activity was observed in post mortem analysis of brain tissue of Alzheimer's disease (AD) patients, suggesting the involvement of Cdk5 in the pathomechanism of this neurodegenerative disease. However, our recent study demonstrated the important function of Cdk5 in regulating inflammatory reaction. METHODS: Since the role of Cdk5 in regulation of inflammatory signalling in AD is unknown, we investigated the involvement of Cdk5 in neuroinflammation induced by single intracerebroventricular (icv) injection of amyloid beta protein (Aß) oligomers in mouse. The brain tissue was analysed up to 35 days post injection. Roscovitine (intraperitoneal administration) was used as a potent Cdk5 inhibitor. The experiments were also performed on human neuroblastoma SH-SY5Y as well as mouse BV2 cell lines treated with exogenous oligomeric Aß. RESULTS: Our results demonstrated that single injection of Aß oligomers induces long-lasting activation of microglia and astrocytes in the hippocampus. We observed also profound, early inflammatory response in the mice hippocampus, leading to the significant elevation of pro-inflammatory cytokines expression (e.g. TNF-α, IL-1ß, IL-6). Moreover, Aß oligomers elevated the formation of truncated protein p25 in mouse hippocampus and induced overactivation of Cdk5 in neuronal cells. Importantly, administration of roscovitine reduced the inflammatory processes evoked by Aß in the hippocampus, leading to the significant decrease of cytokines level. CONCLUSIONS: These studies clearly show the involvement of Cdk5 in modulation of brain inflammatory response induced by Aß and may indicate this kinase as a novel target for pharmacological intervention in AD.


Subject(s)
Amyloid beta-Peptides/toxicity , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Cyclin-Dependent Kinase 5/metabolism , Hippocampus/metabolism , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Peptide Fragments/toxicity , Animals , Cell Line, Tumor , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Protein Kinase Inhibitors/pharmacology , Roscovitine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...