Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7895, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036547

ABSTRACT

The current decarbonization strategy for the steel and cement industries is inherently dependent on the build-out of infrastructure, including for CO2 transport and storage, renewable electricity, and green hydrogen. However, the deployment of this infrastructure entails considerable uncertainty. Here we explore the global feasible supply of steel and cement within Paris-compliant carbon budgets, explicitly considering uncertainties in the deployment of infrastructure. Our scenario analysis reveals that despite substantial growth in recycling- and hydrogen-based production, the feasible steel supply will only meet 58-65% (interquartile range) of the expected baseline demand in 2050. Cement supply is even more uncertain due to limited mitigation options, meeting only 22-56% (interquartile range) of the expected baseline demand in 2050. These findings pose a two-fold challenge for decarbonizing the steel and cement industries: on the one hand, governments need to expand essential infrastructure rapidly; on the other hand, industries need to prepare for the risk of deployment failures, rather than solely waiting for large-scale infrastructure to emerge. Our feasible supply scenarios provide compelling evidence of the urgency of demand-side actions and establish benchmarks for the required level of resource efficiency.

2.
Environ Sci Technol ; 56(14): 10269-10278, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35772406

ABSTRACT

In industrial symbiosis, byproducts and wastes are used to substitute other process inputs, with the goal of reducing the environmental impact of production. Potentially, such symbiosis could reduce greenhouse gas emissions; although there exists literature exploring this at specific industrial sites, there has not yet been a quantitative global assessment of the potential toward climate mitigation by industrial symbiosis in bulk material production of steel, cement, paper, and aluminum. A model based on physical production recipes is developed to estimate global mass flows for production of these materials with increasing levels of symbiosis. The results suggest that even with major changes to byproduct utilization in cement production, the emission reduction potential is low (7% of the total bulk material system emissions) and will decline as coal-fired electricity generation and blast furnace steel production are phased out. Introducing new technologies for heat recovery allows a greater potential reduction in emissions (up to 18%), but the required infrastructure and technologies have not yet been deployed at scale. Therefore, further industrial symbiosis is unlikely to make a significant contribution to GHG emission mitigation in bulk material production.

SELECTION OF CITATIONS
SEARCH DETAIL
...