Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 34(4): 781-792.e3, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38309270

ABSTRACT

The evolution of arborescence in Devonian plants, followed by their architectural radiation in the Carboniferous, is a transition fundamental to Earth-system processes and ecological development. However, this evolutionary transition in trees is based on preserved trunks, of which only a few known specimens possess crowns. We describe Mississippian-aged (Tournaisian) trees with a unique three-dimensional crown morphology from New Brunswick, Canada. The trees were preserved by earthquake-induced, catastrophic burial of lake-margin vegetation. The tree architecture consists of an unbranched, 16-cm-diameter trunk with compound leaves arranged in spirals of ∼13 and compressed into ∼14 cm of vertical trunk length. Compound leaves in the upper ∼0.75 m of the trunk measure >1.75 m in length and preserve alternately arranged secondary laterals beginning at 0.5 m from the trunk; the area below the trunk bears only persistent leaf bases. The principal specimen lacks either apical or basal sections, although an apex is preserved in another. Apically, the leaves become less relaxed toward horizontal and are borne straight at an acute angle at the crown. The compact leaf organization and leaf length created a crown volume of >20-30 m3. This growth strategy likely maximized light interception and reduced resource competition from groundcover. From their growth morphology, canopy size, and volume, we propose that these fossils represent the earliest evidence of arborescent subcanopy-tiering. Moreover, although systematically unresolved, this specimen shows that Early Carboniferous vegetation was more complex than realized, signaling that it was a time of experimental, possibly transitional and varied, growth architectures.


Subject(s)
Fossils , Plants , New Brunswick , Plants/anatomy & histology , Trees , Canada , Plant Leaves
2.
Nat Commun ; 11(1): 1428, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32188857

ABSTRACT

The current model for the end-Permian terrestrial ecosystem crisis holds that systematic loss exhibited by an abrupt turnover from the Daptocephalus to the Lystrosaurus Assemblage Zone (AZ; Karoo Basin, South Africa) is time equivalent with the marine Permian-Triassic boundary (PTB). The marine event began at 251.941 ± 0.037 Ma, with the PTB placed at 251.902 ± 0.024 Ma (2σ). Radio-isotopic dates over this interval in the Karoo Basin were limited to one high resolution ash-fall deposit in the upper Daptocephalus AZ (253.48 ± 0.15 (2σ) Ma) with no similar age constraints for the overlying biozone. Here, we present the first U-Pb CA-ID-TIMS zircon age (252.24 ± 0.11 (2σ) Ma) from a pristine ash-fall deposit in the Karoo Lystrosaurus AZ. This date confirms that the lower exposures of the Lystrosaurus AZ are of latest Permian age and that the purported turnover in the basin preceded the end-Permian marine event by over 300 ka, thus refuting the previously used stratigraphic marker for terrestrial end-Permian extinction.

3.
Nature ; 567(7746): 38-39, 2019 03.
Article in English | MEDLINE | ID: mdl-30824877
SELECTION OF CITATIONS
SEARCH DETAIL
...