Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 32(12): 108184, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32966782

ABSTRACT

Oncoproteins such as the BRAFV600E kinase endow cancer cells with malignant properties, but they also create unique vulnerabilities. Targeting of BRAFV600E-driven cytoplasmic signaling networks has proved ineffective, as patients regularly relapse with reactivation of the targeted pathways. We identify the nuclear protein SFPQ to be synthetically lethal with BRAFV600E in a loss-of-function shRNA screen. SFPQ depletion decreases proliferation and specifically induces S-phase arrest and apoptosis in BRAFV600E-driven colorectal and melanoma cells. Mechanistically, SFPQ loss in BRAF-mutant cancer cells triggers the Chk1-dependent replication checkpoint, results in decreased numbers and reduced activities of replication factories, and increases collision between replication and transcription. We find that BRAFV600E-mutant cancer cells and organoids are sensitive to combinations of Chk1 inhibitors and chemically induced replication stress, pointing toward future therapeutic approaches exploiting nuclear vulnerabilities induced by BRAFV600E.


Subject(s)
Colorectal Neoplasms/genetics , Mutation/genetics , PTB-Associated Splicing Factor/metabolism , Proto-Oncogene Proteins B-raf/genetics , Synthetic Lethal Mutations/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Checkpoint Kinase 1/metabolism , Colorectal Neoplasms/pathology , DNA Damage , DNA Repair/drug effects , DNA Repair/genetics , DNA Replication/drug effects , DNA Replication/genetics , Female , Humans , Hydroxyurea/pharmacology , Mice, Nude , Rad51 Recombinase/metabolism , Reproducibility of Results , S Phase/drug effects , S Phase/genetics , Stress, Physiological/drug effects , Tumor Suppressor p53-Binding Protein 1/metabolism
2.
Cell Death Dis ; 11(7): 499, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32612138

ABSTRACT

To unravel vulnerabilities of KRAS-mutant CRC cells, a shRNA-based screen specifically inhibiting MAPK pathway components and targets was performed in CaCo2 cells harboring conditional oncogenic KRASG12V. The custom-designed shRNA library comprised 121 selected genes, which were previously identified to be strongly regulated in response to MEK inhibition. The screen showed that CaCo2 cells expressing KRASG12V were sensitive to the suppression of the DNA replication licensing factor minichromosome maintenance complex component 7 (MCM7), whereas KRASwt CaCo2 cells were largely resistant to MCM7 suppression. Similar results were obtained in an isogenic DLD-1 cell culture model. Knockdown of MCM7 in a KRAS-mutant background led to replication stress as indicated by increased nuclear RPA focalization. Further investigation showed a significant increase in mitotic cells after simultaneous MCM7 knockdown and KRASG12V expression. The increased percentage of mitotic cells coincided with strongly increased DNA damage in mitosis. Taken together, the accumulation of DNA damage in mitotic cells is due to replication stress that remained unresolved, which results in mitotic catastrophe and cell death. In summary, the data show a vulnerability of KRAS-mutant cells towards suppression of MCM7 and suggest that inhibiting DNA replication licensing might be a viable strategy to target KRAS-mutant cancers.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mitosis , Mutation/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Replication Origin , Caco-2 Cells , Cell Death , Cell Proliferation , Cellular Senescence , DNA Damage , DNA Replication , Gene Knockdown Techniques , Humans , Minichromosome Maintenance Complex Component 7/metabolism
3.
Nat Commun ; 8: 14093, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28120820

ABSTRACT

Genetic heterogeneity between and within tumours is a major factor determining cancer progression and therapy response. Here we examined DNA sequence and DNA copy-number heterogeneity in colorectal cancer (CRC) by targeted high-depth sequencing of 100 most frequently altered genes. In 97 samples, with primary tumours and matched metastases from 27 patients, we observe inter-tumour concordance for coding mutations; in contrast, gene copy numbers are highly discordant between primary tumours and metastases as validated by fluorescent in situ hybridization. To further investigate intra-tumour heterogeneity, we dissected a single tumour into 68 spatially defined samples and sequenced them separately. We identify evenly distributed coding mutations in APC and TP53 in all tumour areas, yet highly variable gene copy numbers in numerous genes. 3D morpho-molecular reconstruction reveals two clusters with divergent copy number aberrations along the proximal-distal axis indicating that DNA copy number variations are a major source of tumour heterogeneity in CRC.


Subject(s)
Colorectal Neoplasms/genetics , DNA Copy Number Variations/genetics , Gene Dosage/genetics , Adenomatous Polyposis Coli Protein/genetics , Adult , Aged , Aged, 80 and over , DNA Mutational Analysis , Female , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Mutation , Tumor Suppressor Protein p53/genetics , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...