Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37177593

ABSTRACT

Energy harvesting (EH) sources require the tracking of their maximum power point (MPP) to ensure that maximum energy is captured. This tracking process, performed by an MPP tracker (MPPT), is performed by periodically measuring the EH transducer's output at a given sampling rate. The harvested power as a function of the sampling parameters has been analyzed in a few works, but the power gain achieved with respect to the case of a much slower sampling rate than the EH source's frequency has not been assessed so far. In this work, simple expressions are obtained that predict this gain assuming a Thévenin equivalent for the EH transducer. It is shown that the power gain depends on the relationship between the square of AC to DC open circuit voltage of the EH transducer. On the other hand, it is proven that harvested power increases, using a suitable constant signal for the MPP voltage instead of tracking the MPP at a low sampling rate. Experimental results confirmed the theoretical predictions. First, a function generator with a series resistor of 1 kΩ was used, emulating a generic Thévenin equivalent EH. Three waveform types were used (sinus, square, and triangular) with a DC voltage of 2.5 V and AC rms voltage of 0.83 V. A commercial MPPT with a fixed sampling rate of 3 Hz was used and the frequency of the waveforms was changed from 50 mHz to 50 Hz, thus effectively emulating different sampling rates. Experimental power gains of 11.1%, 20.7%, and 7.43% were, respectively, achieved for the sinus, square, and triangular waves, mainly agreeing with the theoretical predicted ones. Then, experimental tests were carried out with a wave energy converter (WEC) embedded into a drifter and attached to a linear shaker, with a sinus excitation frequency of 2 Hz and peak-to-peak amplitude of 0.4 g, in order to emulate the drifter's movement under a sea environment. The WEC provided a sinus-like waveform. In this case, another commercial MPPT with a sampling period of 16 s was used for generating a slow sampling rate, whereas a custom MPPT with a sampling rate of 60 Hz was used for generating a high sampling rate. A power gain around 20% was achieved in this case, also agreeing with the predicted gain.

2.
Sensors (Basel) ; 19(7)2019 Apr 06.
Article in English | MEDLINE | ID: mdl-30959869

ABSTRACT

This paper proposes a compact Thévenin model for a rectenna. This model is then applied to design a high-efficiency radio frequency harvester with a maximum power point tracker (MPPT). The rectenna under study consists of an L-matching network and a half-wave rectifier. The derived model is simpler and more compact than those suggested so far in the literature and includes explicit expressions of the Thévenin voltage (Voc) and resistance and of the power efficiency related with the parameters of the rectenna. The rectenna was implemented and characterized from -30 to -10 dBm at 808 MHz. Experimental results agree with the proposed model, showing a linear current⁻voltage relationship as well as a maximum efficiency at Voc/2, in particular 60% at -10 dBm, which is a remarkable value. An MPPT was also used at the rectenna output in order to automatically work at the maximum efficiency point, with an overall efficiency near 50% at -10 dBm. Further tests were performed using a nearby transmitting antenna for powering a sensor node with a power consumption of 4.2 µW.

3.
Sensors (Basel) ; 17(8)2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28757592

ABSTRACT

Rectennas, which mainly consist of an antenna, matching network, and rectifier, are used to harvest radiofrequency energy in order to power tiny sensor nodes, e.g., the nodes of the Internet of Things. This paper demonstrates for the first time, the existence of an optimum voltage gain for high-pass L-matching networks used in rectennas by deriving an analytical expression. The optimum gain is that which leads to maximum power efficiency of the rectenna. Here, apart from the L-matching network, a Schottky single-diode rectifier was used for the rectenna, which was optimized at 868 MHz for a power range from -30 dBm to -10 dBm. As the theoretical expression depends on parameters not very well-known a priori, an accurate search of the optimum gain for each power level was performed via simulations. Experimental results show remarkable power efficiencies ranging from 16% at -30 dBm to 55% at -10 dBm, which are for almost all the tested power levels the highest published in the literature for similar designs.

SELECTION OF CITATIONS
SEARCH DETAIL
...