Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(19): 24321-24340, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700914

ABSTRACT

In current clinical practices related to orthopedics, dental, and cardiovascular surgeries, a number of biomaterial coatings, such as hydroxyapatite (HAp), diamond-like carbon (DLC), have been used in combination with metallic substrates (stainless steel, Ti6Al4V alloy, etc.). Although SiBCN coatings are widely explored in material science for diverse applications, their potential remains largely unexplored for biomedical applications. With this motivation, the present work reports the development of SiBxCyNzOm coatings on a Ti6Al4V substrate, employing a reactive radiofrequency (RF) magnetron sputtering technique. Three different coating compositions (Si0.27B0.10C0.31N0.07O0.24, Si0.23B0.06C0.21N0.22O0.27, and Si0.20B0.05C0.19N0.20O0.35) were obtained using a Si2BC2N target and varying nitrogen flow rates. The hydrophilic properties of the as-synthesized coatings were rationalized in terms of an increase in the number of oxygen-containing functional groups (OH and NO) on the surface, as probed using XPS and FTIR analyses. Furthermore, the cellular monoculture of SVEC4-10 endothelial cells and L929 fibroblasts established good cytocompatibility. More importantly, the coculture system of SVEC4-10 and L929, in the absence of growth factors, demonstrated clear cellular phenotypical changes, with extensive sprouting leading to tube-like morphologies on the coating surfaces, when stimulated using a customized cell stimulator (StimuCell) with 1.15 V/cm direct current (DC) electric field strength for 1 h. In addition, the hemocompatibility assessment using human blood samples revealed clinically acceptable hemolysis, less erythrocyte adhesion, shorter plasma recalcification, and reduced risk for thrombosis on the SiBxCyNzOm coatings, when compared to uncoated Ti6Al4V. Taken together, the present study unambiguously establishes excellent cytocompatibility, hemocompatibility, and defines the preangiogenic properties of SiBxCyNzOm bioceramic coatings for potential biomedical applications.


Subject(s)
Alloys , Coated Materials, Biocompatible , Materials Testing , Titanium , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Alloys/chemistry , Alloys/pharmacology , Titanium/chemistry , Titanium/pharmacology , Humans , Animals , Mice , Endothelial Cells/drug effects , Endothelial Cells/cytology , Cell Line , Surface Properties , Fibroblasts/drug effects , Fibroblasts/cytology , Neovascularization, Physiologic/drug effects
2.
ACS Biomater Sci Eng ; 6(10): 5571-5587, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33320557

ABSTRACT

For biomedical applications, a number of ceramic coatings have been investigated, but the interactions with the components of living system remain unexplored for oxycarbonitride coatings. While addressing this aspect, the present study aims to provide an understanding of the biocompatibility of novel SiCxNyOz coatings that could validate the hypothesis that such coatings may not only enhance the cell-material interaction by re-endothelialization but also can help to reduce bacterial adhesion and activation of blood cells. This work reports the physicochemical properties, hemocompatibility, endothelialization, and antibacterial properties of novel amorphous SiCxNyOz coatings deposited on commercial pure titanium (Ti) by radiofrequency (RF) magnetron sputtering at varied nitrogen (N2) flow rates. A comparison is made with diamond-like carbon (DLC) coatings, which are clinically used. The surface roughness, surface wettability, nanoscale hardness, and surface energy of SiCxNyOz coatings were found to be dependent on the nitrogen (N2) flow rate. Importantly, the as-deposited SiCxNyOz coatings exhibited much better nanoscale hardness and scratch resistance than DLC coatings. Furthermore, Raman spectroscopy analysis of the SiCxNyOz coating deposited on Ti showed a change in the graphitic/disordered carbon content. Cytocompatibility and hemocompatibility properties of the as-deposited SiCxNyOz coating were evaluated using the Mus musculus lymphoid endothelial cell line (SVEC4-10) and rabbit blood in vitro. WST-1 assay analysis showed that these coatings, when compared to DLC, exhibited a better proliferation of endothelial cells, which can potentially result in improved surface endothelialization. Furthermore, qualitative and quantitative analyses of immunofluorescence images revealed a dense cellular layer of SVEC4-10 on SiCxNyOz coatings, deposited at 15 and 30 sccm nitrogen flow rates. As far as compatibility with rabbit blood is concerned, the hemolysis of the SiCxNyOz coatings was less than 4%, with slightly lower values for coatings deposited without N2 flow. The SiCxNyOz coatings support less platelet adhesion and aggregation, with no signature of morphological deformation, as compared to the uncoated titanium substrate or DLC coatings. Furthermore, SiCxNyOz coatings were also found to be effectively extending the blood coagulation time for a period of 60 min. The antimicrobial study of as-deposited SiCxNyOz coatings on E. coli and S. aureus bacteria revealed the effective inhibition of bacterial proliferation after 24 h of culture. An attempt has been made to explain the cyto- and hemocompatibility properties with antimicrobial efficacy of coatings in terms of the variation in the coating composition and surface energy. Taken together, we conclude that SiC1.3N0.76O0.87 coating having a roughness of 17 nm and a surface free energy of 54.0 ± 0.7 mN/m can exhibit the best combination of hardness, elastic modulus, scratch resistance, cytocompatibility, hemocompatibility, and bactericidal properties.


Subject(s)
Coated Materials, Biocompatible , Staphylococcus aureus , Animals , Blood Cells , Coated Materials, Biocompatible/pharmacology , Endothelial Cells , Escherichia coli , Mice , Rabbits
3.
Soft Matter ; 16(46): 10397-10404, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33215625

ABSTRACT

A liquid drop impacting on a smooth surface heated above the boiling point and below the Leidenfrost temperature spreads over the surface forming a thin liquid film. We observed bubble nuclei originating at the first contact of a liquid with a heated sapphire surface, and the formation of a thin liquid film with one layer of microbubbles. In the present paper, we describe in detail the bubble dynamics for the substrate temperature ranging from 130 to 170 °C. The thickness of the liquid film is estimated to vary within the range from 40 to 80 µm at We = 76 and an advancing contact angle of 76°. We have detected how bubbles break the film, which is followed by dry patch propagation and sessile droplet formation, and elucidated the mechanism of spontaneous liquid film breakup. The bubble coalescence and waves induced by the rollback flow from the lamella periphery or by reversible bubble bursting are the reason for irreversible hole formation.

4.
Phys Rev E ; 101(2-1): 022801, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32168621

ABSTRACT

We consider an advancing contact line traveling over a region of locally modified wetting or thermal substrate properties. A lubrication-type model is developed to account for coupling of viscous flow, evaporation, surface tension, and disjoining pressure. Stick-slip-type behavior is found for a range of conditions as the contact line passes over the defect and explained by a temporary increase in the local stresses disrupting the liquid supply into the contact line region. A simple estimate of the degree of contact line slowdown is obtained and compared with the numerical simulation results. Tangential stresses arising from the action of the electric field on the interfacial changes are accounted for in our model; neglecting them would lead to an overprediction of the time of interaction between the contact line and the defect. Increasing the substrate temperature uniformly has little effect on contact line motion, but local increase of the temperature enhances the tendency of the contact line to be pulled back by the defect, an effect explained by the Marangoni stresses.

5.
Soft Matter ; 14(10): 1811-1821, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29442108

ABSTRACT

The evaporation dynamics of a water droplet with an initial volume of 2 µl from glass surfaces with fluoropolymer coatings are investigated using the shadow technique and an optical microscope. The droplet profile for a contact angle of less than 5° is constructed using an image-analyzing interference technique, and evaporation dynamics are investigated at the final stage. We coated the glass slides with a thin film of a fluoropolymer by the hot-wire chemical vapor deposition method at different deposition modes depending on the deposition pressure and the temperature of the activating wire. The resulting surfaces have different structures affecting the wetting properties. Droplet evaporation from a constant contact radius mode in the early stage of evaporation was found followed by the mode where both contact angle and contact radius simultaneously vary in time (final stage) regardless of wettability of the coated surfaces. We found that depinning occurs at small contact angles of 2.2-4.7° for all samples, which are smaller than the measured receding contact angles. This is explained by imbibition of the liquid into the developed surface of the "soft" coating that leads to formation of thin droplets completely wetting the surface. The final stage, which is little discussed in the literature, is also recorded. We have singled out a substage where the contact line velocity is abruptly increasing for all coated and uncoated surfaces. The critical droplet height corresponding to the transition to this substage is about 2 µm with R/h = 107. The duration of this substage is the same for all coated and uncoated surfaces. Droplets observed at this substage for all the tested surfaces are axisymmetric. The specific evaporation rate clearly demonstrates an abrupt increase at the final substage of the droplet evaporation. The classical R2 law is justified for the complete wetting situation where the droplet is disappearing in an axisymmetric manner.

6.
Phys Chem Chem Phys ; 19(22): 14606-14614, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28537288

ABSTRACT

Building a connection between the variations in interfacial tension and the microstructure of the oil-water interface is still very challenging. Here, we employ a molecular dynamics method to study the effect of monovalent ions on the decane-water interfacial tension and reveal the relationship between ionic hydration and the variation of interfacial tension. Our results indicate that interfacial tension presents a non-monotonic dependence on the ionic concentrations owing to the distinctive adsorption characteristics of ions. At low ionic concentrations, the hydration of the discrete ions at the interface causes an enhancement in the virial term of the interfacial tension, resulting in an increase of the interfacial tension with increasing ionic concentrations. At high ionic concentrations, the ion pairs at the interface weaken the ionic hydration, thus the virial term of the interfacial tension decreases and the interfacial tension decreases slightly. In addition, the kinetic energy term of interfacial tension increases only with increasing temperature, while the virial term decreases with an increase in either temperature or pressure on account of the weakening ionic hydration; therefore, the increase of temperature and pressure induces different degrees of the decrease in the interfacial tension owing to the major contribution of the virial term, particularly at high ionic concentrations.

7.
Adv Colloid Interface Sci ; 228: 92-104, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26792018

ABSTRACT

Solid surfaces with chemical patterning or topographical structure have attracted attention due to many potential applications such as manufacture of flexible electronics, microfluidic devices, microscale cooling systems, as well as development of self-cleaning, antifogging, and antimicrobial surfaces. In many configurations involving patterned or structured surfaces, liquid films are in contact with such solid surfaces and the issue of film stability becomes important. Studies of stability in this context have been largely focused on specific applications and often not connected to each other. The purpose of the present review is to provide a unified view of the topic of stability and rupture of liquid films on patterned and structured surfaces, with particular focus on common mathematical methods, such as lubrication approximation for the liquid flow, bifurcation analysis, and Floquet theory, which can be used for a wide variety of problems. The physical mechanisms of the instability discussed include disjoining pressure, thermocapillarity, and classical hydrodynamic instability of gravity-driven flows. Motion of a contact line formed after the film rupture is also discussed, with emphasis on how the receding contact angle is expected to depend on the small-scale properties of the substrate.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 1): 041606, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22181150

ABSTRACT

We investigate stability and breakup of a thin liquid film on a solid surface under the action of disjoining pressure. The solid surface is structured by parallel grooves. Air is trapped in the grooves under the liquid film. Our mathematical model takes into account the effect of slip due to the presence of menisci separating the liquid film from the air inside the grooves, the deformation of these menisci due to local variations of pressure in the liquid film, and nonuniformities of the Hamaker constant which measures the strength of disjoining pressure. Both linear stability and strongly nonlinear evolution of the film are analyzed. Surface structuring results in decrease of the fastest growing instability wavelength and the rupture time. It is shown that a simplified description of film dynamics based on the standard formula for effective slip leads to significant deviations from the behavior seen in our simulations. Self-similar decay over several orders of magnitude of the film thickness near the rupture point is observed. We also show that the presence of the grooves can lead to instability in otherwise stable films if the relative groove width is above a critical value, found as a function of disjoining pressure parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...