Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(12): 8463-8471, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36916872

ABSTRACT

The structure of cationic and anionic Cu clusters grown in multiply charged superfluid He nanodroplets was investigated using He tagging as a chemical probe. Further, the structure assignment was done based on the magic-numbered ions, representing the most energetically favorable structures. The exact geometry of the cluster and positions of He is verified by calculations. It was found that the structure of the clusters grown in the He droplets is similar to that produced with a laser ablation source and the lowest energy structures predicted by theoretical investigations. The only difference is the structure of the Cu5+, which in our experiments has a twisted-X geometry, rather than a bipyramid or planar half-wheel geometry suggested by previous studies. This might be attributed to the different cluster formation mechanisms, the absence of the Ar-tag and the ultracold environment. It was also found that He tends to bind to partially more electro-negative or positive areas of the anionic or cationic clusters, respectively.

2.
J Chem Phys ; 152(1): 014303, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31914740

ABSTRACT

The addition of small impurities, such as a single proton charge carrier, in noble gas clusters has recently been shown to have considerable effects on their geometries and stabilities. Here, we report on a mass spectrometric study of cationic clusters of N2 molecules and the effects that adding hydrogen, in the form of D2, has on the systems. Protonated nitrogen clusters formed by the breakup of D2 are shown to have similar behaviors as protonated rare gas clusters. For larger systems consisting of different mixtures of intact N2 and D2, different molecular species are found to be interchangeable sometimes with regard to magic numbers. This is especially true for the (N2)n(D2)mD+ systems with n + m = 17, which is particularly abundant for all measured combinations of n and m.

3.
Phys Rev Lett ; 121(7): 079901, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30169079

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.119.073001.

4.
Rev Sci Instrum ; 89(7): 075102, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30068131

ABSTRACT

In this paper, we give a detailed description of an electrospray ion source test bench and a single-pass setup for ion fragmentation studies at the Double ElectroStatic Ion Ring ExpEriment infrastructure at Stockholm University. This arrangement allows for collision-induced dissociation experiments at the center-of-mass energies between 10 eV and 1 keV. Charged fragments are analyzed with respect to their kinetic energies (masses) by means of an electrostatic energy analyzer with a wide angular acceptance and adjustable energy resolution.

5.
Phys Rev Lett ; 119(7): 073001, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28949695

ABSTRACT

We apply near-threshold laser photodetachment to characterize the rotational quantum level distribution of OH^{-} ions stored in the cryogenic ion-beam storage ring DESIREE at Stockholm University. We find that the stored ions relax to a rotational temperature of 13.4±0.2 K with 94.9±0.3% of the ions in the rotational ground state. This is consistent with the storage ring temperature of 13.5±0.5 K as measured with eight silicon diodes but in contrast to all earlier studies in cryogenic traps and rings where the rotational temperatures were always much higher than those of the storage devices at their lowest temperatures. Furthermore, we actively modify the rotational distribution through selective photodetachment to produce an OH^{-} beam where 99.1±0.1% of approximately one million stored ions are in the J=0 rotational ground state. We measure the intrinsic lifetime of the J=1 rotational level to be 145±28 s.

6.
J Phys Chem Lett ; 6(22): 4504-9, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26523738

ABSTRACT

We have measured absolute cross sections for ultrafast (femtosecond) single-carbon knockout from polycyclic aromatic hydrocarbon (PAH) cations as functions of He­PAH center-of-mass collision energy in the 10­200 eV range. Classical molecular dynamics (MD) simulations cover this range and extend up to 105 eV. The shapes of the knockout cross sections are well-described by a simple analytical expression yielding experimental and MD threshold energies of EthExp = 32.5 ± 0.4 eV and EthMD = 41.0 ± 0.3 eV, respectively. These are the first measurements of knockout threshold energies for molecules isolated in vacuo. We further deduce semiempirical (SE) and MD displacement energies, i.e., the energy transfers to the PAH molecules at the threshold energies for knockout, of TdispSE = 23.3 ± 0.3 eV and TdispMD = 27.0 ± 0.3 eV. The semiempirical results compare favorably with measured displacement energies for graphene (Tdisp = 23.6 eV).

7.
J Chem Phys ; 142(14): 144305, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25877576

ABSTRACT

We have investigated the effectiveness of molecular hydrogen (H2) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H2 formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H2 emission is correlated with multi-fragmentation processes, which means that the [PAH-2H](+) peak intensities in the mass spectra may not be used for estimating H2-formation rates.

8.
Phys Chem Chem Phys ; 16(40): 21980-7, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25205444

ABSTRACT

We report experimental total, absolute, fragmentation cross sections for anthracene C14H10, acridine C13H9N, and phenazine C12H8N2 ions colliding with He at center-of-mass energies close to 100 eV. In addition, we report results for the same ions colliding with Ne, Ar, and Xe at higher energies. The total fragmentation cross sections for these three ions are the same within error bars for a given target. The measured fragment mass distributions reveal significant contributions from both delayed (≫10(-12) s) statistical fragmentation processes as well as non-statistical, prompt (∼10(-15) s), single atom knockout processes. The latter dominate and are often followed by secondary statistical fragmentation. Classical Molecular Dynamics (MD) simulations yield separate cross sections for prompt and delayed fragmentation which are consistent with the experimental results. The intensity of the single C/N-loss peak, the signature of non-statistical fragmentation, decreases with the number of N atoms in the parent ion. The fragment intensity distributions for losses of more than one C or N atom are rather similar for C14H10 and C13H9N but differ strongly for C12H8N2 where weak C-N bonds often remain in the fragments after the first fragmentation step. This greatly increases their probability to fragment further. Distributions of internal energy remaining in the fragments after knockout are obtained from the MD simulations.

9.
J Chem Phys ; 140(22): 224306, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24929387

ABSTRACT

We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH(+)) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH(+) + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C6H5). Thus nonstatistical fragmentation may be an effective initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.

10.
J Chem Phys ; 139(3): 034309, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23883029

ABSTRACT

We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C60 molecules following collisions with Ar(2+), He(2+), and Xe(20+) at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C60 monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C60]n(+) → C60(+)+(n-1)C60 evaporation model. Excitation energies in the range of only ~0.7 eV per C60 molecule in a [C60]13(+) cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar(2+) and He(2+) collisions, we observe very efficient C119(+) and C118(+) formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C59(+) or C58(+) and C60 during cluster fragmentation. In the Ar(2+) case, it is possible to form even smaller C120-2m(+) molecules (m = 2-7), while no molecular fusion reactions are observed for the present Xe(20+) collisions.

11.
Rev Sci Instrum ; 84(5): 055115, 2013 May.
Article in English | MEDLINE | ID: mdl-23742597

ABSTRACT

We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

12.
Phys Rev Lett ; 110(18): 185501, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683214

ABSTRACT

We report highly selective covalent bond modifications in collisions between keV alpha particles and van der Waals clusters of C(60) fullerenes. Surprisingly, C(119)(+) and C(118)(+) are the dominant molecular fusion products. We use molecular dynamics simulations to show that C(59)(+) and C(58)(+) ions--effectively produced in prompt knockout processes with He(2+)--react rapidly with C(60) to form dumbbell C(119)(+) and C(118)(+). Ion impact on molecular clusters in general is expected to lead to efficient secondary reactions of interest for astrophysics. These reactions are different from those induced by photons.


Subject(s)
Alpha Particles , Fullerenes/chemistry , Cations, Divalent/chemistry , Helium/chemistry , Models, Molecular , Molecular Weight , Monte Carlo Method , Thermodynamics
13.
J Chem Phys ; 138(5): 054306, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23406118

ABSTRACT

We present theoretical absolute charge exchange cross sections for multiply charged cations interacting with the Polycyclic Aromatic Hydrocarbon (PAH) molecules pyrene C(14)H(10), coronene C(24)H(12), or circumcoronene C(54)H(18). These planar, nearly circular, PAHs are modelled as conducting, infinitely thin, and perfectly circular discs, which are randomly oriented with respect to straight line ion trajectories. We present the analytical solution for the potential energy surface experienced by an electron in the field of such a charged disc and a point-charge at an arbitrary position. The location and height of the corresponding potential energy barrier from this simple model are in close agreement with those from much more computationally demanding Density Functional Theory (DFT) calculations in a number of test cases. The model results compare favourably with available experimental data on single- and multiple electron transfer reactions and we demonstrate that it is important to include the orientation dependent polarizabilities of the molecules (model discs) in particular for the larger PAHs. PAH ionization energy sequences from DFT are tabulated and used as model inputs. Absolute cross sections for the ionization of PAH molecules, and PAH ionization energies such as the ones presented here may be useful when considering the roles of PAHs and their ions in, e.g., interstellar chemistry, stellar atmospheres, and in related photoabsorption and photoemission spectroscopies.


Subject(s)
Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Compounds/chemistry , Pyrenes/chemistry , Electron Transport , Ions/chemistry , Models, Molecular , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...