Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cartilage ; 13(2_suppl): 1755S-1769S, 2021 12.
Article in English | MEDLINE | ID: mdl-32070108

ABSTRACT

OBJECTIVE: Large cartilage defects and osteoarthritis (OA) cause cartilage loss and remain a therapeutic challenge. Three-dimensional (3D) bioprinting with autologous cells using a computer-aided design (CAD) model generated from 3D imaging has the potential to reconstruct patient-specific features that match an articular joint lesion. DESIGN: To scan a human OA tibial plateau with a cartilage defect, retrieved after total knee arthroplasty, following clinical imaging techniques were used: (1) computed tomography (CT), (2) magnetic resonance imaging (MRI), and (3) a 3D scanner. From such a scan, a CAD file was obtained to generate G-code to control 3D bioprinting in situ directly into the tibial plateau lesion. RESULTS: Highest resolution was obtained using the 3D scanner (2.77 times more points/mm2 than CT), and of the 3 devices tested, only the 3D scanner was able to detect the actual OA defect area. Human chondrocytes included in 3D bioprinted constructs produced extracellular matrix and formed cartilage tissue fragments after 2 weeks of differentiation and high levels of a mature splice version of collagen type II (Col IIA type B), characteristic of native articular cartilage and aggrecan (ACAN). Chondrocytes had a mean viability of 81% in prints after day 5 of differentiation toward cartilage and similar viability was detected in control 3D pellet differentiation of chondrocytes (mean viability 72%). CONCLUSION: Articular cartilage can be formed in 3D bioprints. Thus, this 3D bioprinting system with chondrocytes simulating a patient-specific 3D model provides an attractive strategy for future treatments of cartilage defects or early OA.


Subject(s)
Bioprinting , Cartilage, Articular , Cartilage, Articular/diagnostic imaging , Chondrocytes , Collagen , Collagen Type II , Humans
3.
Eur J Clin Invest ; 49(5): e13082, 2019 May.
Article in English | MEDLINE | ID: mdl-30725487

ABSTRACT

BACKGROUND: The objective of this study was to develop a method for directly analysing osteochondral samples straight out of the operating room without cell culturing, thereby enabling identification of potential peptide biomarkers to better understand the mechanisms involved in the development of osteoarthritis and pain. MATERIAL AND METHODS: Osteochondral plugs from wounded and macroscopically nonwounded zones of the femur condyle were collected from six patients with manifest osteoarthritis (OA) undergoing total knee arthroplasty (TKA). The samples were demineralized and supernatant was collected and isotopically marked with Tandem Mass Tag (TMT) labelling and analysed using liquid chromatography coupled with tandem mass spectrometry LC-MS/MS. RESULTS: Using peptidomics, 6292 endogenous peptides were identified. Five hundred sixty-six peptides (8 identified endogenous peptides) differed significantly (P-value 0.10) from wounded zones compared to nonwounded zones. CONCLUSION: This pilot study shows promising results for enabling peptidomic analysis of cartilage and bone straight out of the operating room. With further refinement, peptidomics can potentially become a diagnostic tool for OA, and improve the knowledge of disease progression and genesis of pain.


Subject(s)
Cartilage/chemistry , Femur/chemistry , Osteoarthritis, Knee/metabolism , Peptides/analysis , Biomarkers/analysis , Chromatography, Liquid , Humans , Pilot Projects , Specimen Handling , Tandem Mass Spectrometry
4.
Knee Surg Sports Traumatol Arthrosc ; 27(3): 942-949, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30039292

ABSTRACT

PURPOSE: This review explores the mechanisms of joint pain with a special focus on the role of neuropeptides in pain transmission and their potential role in the progression of joint degeneration as seen in osteoarthritis. METHODS: A literature search was performed on papers published between January 1990 and September 2017 using the Web of Science Core Collection, MEDLINE and Scopus databases. RESULTS: What is seen in the subchondral bone and synovia is mirrored in the central nervous system (CNS). Substance P, calcitonin gene-related peptide, vasoactive intestinal peptide and neuropeptide Y are the major peptides involved both in the generation of pain as well as reducing pain post-joint trauma. The interplay between them and other neuropeptides and cytokines influence how noxious stimuli are transduced, transmitted and modulated for a final pain perception as part of a complex cascade of events. There is a close interaction between the different components in the joint that together cross-talk to adapt to load and catabolic factors during injury and inflammation. CONCLUSION: The articular joint should be seen as an organ where local joint pain development and maintenance is influenced by interplay between the local transmitters in the joints as well as their dependence on the CNS. A slow-release cocktail of mixed antibodies targeted against neuropeptides and receptor blockers/stimulators involved in the events of early joint pain or any inflammatory joint disease is a future treatment target. LEVEL OF EVIDENCE: V.


Subject(s)
Arthralgia/physiopathology , Homeostasis/physiology , Neuropeptides/physiology , Osteoarthritis/physiopathology , Bone Diseases, Metabolic/physiopathology , Exercise/physiology , Humans , Inflammation/physiopathology , Neovascularization, Physiologic , Osteogenesis/physiology , Signal Transduction/physiology
5.
Bone ; 120: 393-402, 2019 03.
Article in English | MEDLINE | ID: mdl-30529213

ABSTRACT

OBJECTIVE: The objective of this study was to develop a reproducible and semi-automatic method based on micro computed tomography (microCT) to analyze cartilage and bone morphology of human osteoarthritic knee joints in spatially matching regions of interest. MATERIALS AND METHODS: Tibial plateaus from randomly selected patients with advanced osteoarthritis (OA) who underwent total knee arthroplasty surgery were microCT scanned once fresh and once after staining with Hexabrix. The articular surface was determined manually in the first scan. Total articular surface, defect surface and cartilage surface were computed by triangulation of the cartilage surface and the spatially corresponding subchondral bone regions were automatically generated and the standard cortical bone and trabecular bone morphometric indices were computed. RESULTS: The method to identify cartilage surface and defects was successfully validated against photographic examinations. The microCT measurements of the cartilage defect were also verified by conventional histopathology using safranin O-stained sections. Cartilage thickness and volume was significantly lower for OA condyle compared with healthy condyle. Bone fraction, bone tissue mineral density, cortical density and trabecular thickness differed significantly depending on the level of cartilage damage. CONCLUSION: This new microCT imaging workflow can be used for reproducible quantitative evaluation of articular cartilage damage and the associated changes in subchondral bone morphology in osteoarthritic joints with a relatively high throughput compared to manual contouring. This methodology can be applied to gain better understanding of the OA disease progress in large cohorts.


Subject(s)
Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Knee Joint/diagnostic imaging , Knee Joint/pathology , Osteoarthritis, Knee/diagnostic imaging , X-Ray Microtomography , Contrast Media/chemistry , Humans , Osteoarthritis, Knee/pathology , Reproducibility of Results , Staining and Labeling
6.
Acta Orthop ; 87(sup363): 1-5, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28271925

ABSTRACT

The combination of modern interventional and preventive medicine has led to an epidemic of ageing. While this phenomenon is a positive consequence of an improved lifestyle and achievements in a society, the longer life expectancy is often accompanied by decline in quality of life due to musculoskeletal pain and disability. The Aarhus Regenerative Orthopaedics Symposium (AROS) 2015 was motivated by the need to address regenerative challenges in an ageing population by engaging clinicians, basic scientists, and engineers. In this position paper, we review our contemporary understanding of societal, patient-related, and basic science-related challenges in order to provide a reasoned roadmap for the future to deal with this compelling and urgent healthcare problem.


Subject(s)
Aging/physiology , Musculoskeletal System/physiopathology , Regenerative Medicine/methods , Animals , Comorbidity , Disease Models, Animal , Humans , Regeneration/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...