Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Pulmonol ; 54(8): 1200-1208, 2019 08.
Article in English | MEDLINE | ID: mdl-31012285

ABSTRACT

BACKGROUND: The cystic fibrosis transmembrane conductance regulator (CFTR) modulators ivacaftor and lumacaftor/ivacaftor improve the status of existing infections in patients with cystic fibrosis (CF). It is unknown how well these drugs protect patients against incident infections. We hypothesized that CFTR modulator treatment would decrease new infections with Pseudomonas aeruginosa or Staphylococcus aureus. METHODS: We retrospectively studied a single-center cohort of patients with CF during two time periods (2008-2011, Era 1) and (2012-2015, Era 2) based on the January 2012 approval of ivacaftor. Using Kaplan-Meier analysis, we compared the time to any new infection with P. aeruginosa, methicillin-resistant S. aureus (MRSA), or methicillin-sensitive S. aureus (MSSA) that was absent during a 2-year baseline. We stratified the analysis based on whether patients received ivacaftor or lumacaftor/ivacaftor during Era 2. We used the log-rank test and considered P < 0.05 statistically significant. RESULTS: For patients receiving ivacaftor or lumacaftor/ivacaftor in Era 2, there was a statistically significant delay in the time to new bacterial acquisition in Era 2 vs. Era 1 ( P = 0.008). For patients who did not receive CFTR modulators, there was a trend toward slower acquisition of new bacterial infections in Era 2 compared to Era 1, but this was not statistically significant ( P = 0.10). CONCLUSIONS: Patients receiving ivacaftor or lumacaftor/ivacaftor for CF had significantly delayed acquisition of P. aeruginosa and S. aureus after these drugs were released. This method for analyzing incident infections may be useful for future studies of CFTR modulators and bacterial acquisition in CF registry cohorts.


Subject(s)
Aminophenols/therapeutic use , Aminopyridines/therapeutic use , Benzodioxoles/therapeutic use , Cystic Fibrosis/drug therapy , Pseudomonas Infections/prevention & control , Quinolones/therapeutic use , Staphylococcal Infections/prevention & control , Adolescent , Adult , Child , Child, Preschool , Cystic Fibrosis Transmembrane Conductance Regulator , Drug Combinations , Female , Humans , Male , Pseudomonas aeruginosa , Retrospective Studies , Staphylococcus aureus , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...