Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Educ ; 22(1): 419, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35650575

ABSTRACT

BACKGROUND: Analysis of the biomedical workforce and graduate education have produced recommendations for modifications of pre-doctoral training to broadly prepare trainees for wider ranging scientific careers. Development of training in professional skills is widely recommended, but details of implementation are not widely available. In alignment with these recommendations, we have incorporated professional skills training into the biomedical science graduate curriculum at West Virginia University. An important component of the training is developing conflict resolution and negotiation skills. This training will provide useful skills for academic careers, non-academic careers and life situations outside of the workplace. Conflict resolution/negotiation skills are also relevant in managing issues in diversity, equity and inclusivity. We report our experience in developing this component of the training program, provide an overview of the approach to delivery and practice of skills, and provide an analysis of the reception and effectiveness of the training. METHODS: Evaluation of effectiveness of training used the principals of the Kirkpatrick Four Level Model of Evaluation. At the end of the course, students completed a questionnaire about their perceptions of training and were asked how they would respond to different scenarios requiring conflict resolution/negotiation skills. Several months later, students were surveyed to determine if they used some of these skills and/or witnessed situations where these skills would be useful. RESULTS: We report our experience in developing conflict resolution/negotiation training in our graduate curriculum, provide an overview of the approach to delivery and practice of skills, and provide an analysis of the reception and effectiveness of the training. The results suggest this training meets a need and is effective. Importantly, these materials provide a template for others wishing to implement similar training in their curricula. CONCLUSIONS: Conflict resolution and negotiation training meets a need in graduate education. A mixed approach using didactic and interactive components spaced out over time appears to be an effective method of training.


Subject(s)
Curriculum , Negotiating , Education, Graduate , Humans , Students , Universities
2.
J Vis Exp ; (53)2011 Jul 25.
Article in English | MEDLINE | ID: mdl-21808230

ABSTRACT

Loco-regional invasion of head and neck cancer is linked to metastatic risk and presents a difficult challenge in designing and implementing patient management strategies. Orthotopic mouse models of oral cancer have been developed to facilitate the study of factors that impact invasion and serve as model system for evaluating anti-tumor therapeutics. In these systems, visualization of disseminated tumor cells within oral cavity tissues has typically been conducted by either conventional histology or with in vivo bioluminescent methods. A primary drawback of these techniques is the inherent inability to accurately visualize and quantify early tumor cell invasion arising from the primary site in three dimensions. Here we describe a protocol that combines an established model for squamous cell carcinoma of the tongue (SCOT) with two-photon imaging to allow multi-vectorial visualization of lingual tumor spread. The OSC-19 head and neck tumor cell line was stably engineered to express the F-actin binding peptide LifeAct fused to the mCherry fluorescent protein (LifeAct-mCherry). Fox1(nu/nu) mice injected with these cells reliably form tumors that allow the tongue to be visualized by ex-vivo application of two-photon microscopy. This technique allows for the orthotopic visualization of the tumor mass and locally invading cells in excised tongues without disruption of the regional tumor microenvironment. In addition, this system allows for the quantification of tumor cell invasion by calculating distances that invaded cells move from the primary tumor site. Overall this procedure provides an enhanced model system for analyzing factors that contribute to SCOT invasion and therapeutic treatments tailored to prevent local invasion and distant metastatic spread. This method also has the potential to be ultimately combined with other imaging modalities in an in vivo setting.


Subject(s)
Carcinoma, Squamous Cell/pathology , Microscopy, Fluorescence, Multiphoton/methods , Tongue Neoplasms/pathology , Animals , Disease Models, Animal , Female , Humans , Luminescent Proteins/chemistry , Mice , Mouth Neoplasms/pathology , Neoplasm Invasiveness , Transplantation, Heterologous , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...