Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
BJOG ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973390

ABSTRACT

BACKGROUND: Clinical and preclinical evidence indicate that in utero maternal asthma exposure increases progeny asthma risk. Whether maternal asthma also increases the risks of progeny allergy is unclear. OBJECTIVES: To synthesise the available evidence on the relationship between in utero exposure to maternal asthma and postnatal asthma, wheezing and allergic diseases (Prospero: CRD42020201538). SEARCH STRATEGY: We systematically searched MEDLINE [PubMed], Embase [Ovid], Web of Science, Informit Health, the Cochrane Library, CINAHL [EBSCOhost], MedNar [Deep Web Technologies], ProQuest Theses and Dissertations, Scopus [Elsevier] and Trove, to the end of 2023. SELECTION CRITERIA: Studies reporting asthma, wheeze and/or allergic disease in progeny of women with and without asthma or with asthma classified by control, exacerbation or severity. DATA COLLECTION AND ANALYSIS: Double screening, selection, data extraction and quality assessment were performed, using Joanna Briggs Institute (JBI) scoring. MAIN RESULTS: Of 134 non-overlapping studies, 127 were included in ≥1 meta-analysis. Maternal asthma ever was associated with greater risks of asthma (65 studies, risk ratio [95% confidence interval] 1.76 [1.57-1.96]), wheeze (35 studies, 1.59 [1.52-1.66]), food allergy (5 studies, 1.32 [1.23-1.40]), allergic rhinitis (7 studies, 1.18 [1.06-1.31]) and allergic dermatitis (14 studies, 1.17 [1.11-1.23]) ever in progeny. Asthma during the pregnancy, more severe, and uncontrolled maternal asthma were each associated with greater risks of progeny asthma. CONCLUSIONS: Children of mothers with asthma are at increased risk for the development of allergic diseases. Whether improved maternal asthma control reduces risks of child allergy as well as asthma requires further investigation.

2.
Nutr Rev ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926118

ABSTRACT

CONTEXT: Pregnancy increases nutrient demand, but how nutrient uptake and its determinants adapt to facilitate this is unclear. OBJECTIVE: This review aimed to identify and characterize evidence and evidence gaps regarding changes in gastrointestinal nutrient absorption and its determinants during pregnancy in monogastric mammals. DATA SOURCES: A scoping review of peer-reviewed sources was conducted across PubMed, Scopus, Web of Science, Embase, and ProQuest (theses and dissertations) databases. DATA EXTRACTION: Data extracted included species, pregnancy stages and outcomes. Where sufficient data for a given outcome was available, relative values were summarized graphically or in tables, to allow comparison across pregnancy stages and/or small intestine regions. Searches identified 26 855 sources, of which only 159 were eligible. Mechanistic studies were largely restricted to rodents, and most compared non- and late-pregnant groups, with fewer studies including early- or mid-pregnant groups. DATA ANALYSIS: During pregnancy, there is some evidence for greater capacity for glucose uptake but unchanged amino acid uptake, and good evidence for increased uptake of calcium, iron, and zinc, and slower gastrointestinal passage of nutrients. The available evidence indicates that acute glucose uptake, gastric emptying, and the activities of sucrase, maltase, and lactase do not change during pregnancy. Gaps in the knowledge include the effects of pregnancy on uptake of specific amino acids, lipids, and most minerals and vitamins. CONCLUSION: The results indicate that the gastrointestinal tract adapts during pregnancy to facilitate increased nutrient absorption. Additional data is required in order to assess the underlying mechanisms for and impacts on the absorption of many nutrients, as well as to determine the timing of these adaptations.

3.
Placenta ; 154: 42-48, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38875771

ABSTRACT

INTRODUCTION: Current clinical management of pregnancies at risk of preterm delivery includes maternal antenatal corticosteroid (ACS) treatment. ACS activate the glucocorticoid receptor (GR) in all fetal tissues, maturing the lungs at the cost of impaired brain development, creating a need for novel treatments. The prodrug ciclesonide (CIC) activates the GR only when converted to des-CIC by specific enzymes, including acetylcholinesterase (ACHE) and carboxylesterase 1 and 2 (CES1, CES2). Importantly, the human placenta expresses ACHE and CES, and could potentially produce des-CIC, resulting in systemic fetal exposure and GR activation in all fetal tissues. We therefore investigated CES gene expression and conversion of CIC to des-CIC in human placentae collected during the second trimester (Tri2), and at preterm and term birth. METHODS: Differential expression analysis was performed in Tri2 (n = 27), preterm (n = 34), and term (n = 40) placentae using the DESeq2 R-package. Conversion of CIC to des-CIC was measured in a subset of placenta samples (Tri2 n = 7, preterm n = 26, term n = 20) using functional assays. RESULTS: ACHE mRNA expression was higher in Tri2 male than preterm and term male placentae only, whereas CES1 mRNA expression was higher in Tri2 than preterm or term placentae of both sexes. Conversion of CIC to des-CIC did not differ between gestational ages. DISCUSSION: Conversion of CIC to des-CIC by the human placenta may preclude its use as a novel GR-agonist in threatened preterm birth. In vivo studies are required to confirm the extent to which placental activation occurs after maternal treatment.

4.
Nat Food ; 5(3): 206-210, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38459392

ABSTRACT

Livestock heat stress threatens production, particularly in semi-arid, arid and tropical regions. Using established temperature thresholds for sheep, we modelled +1 °C and +3 °C temperature increases over the historical baseline, estimating that 2.1 million potential lambs are lost annually due to heat stress alone, increasing to 2.5 and 3.3 million, respectively, as temperatures rise. Heat stress poses risks at key periods of the reproductive cycle, with consequences across the Australian sheep flock.


Subject(s)
Heat Stress Disorders , Sheep , Animals , Pregnancy , Female , Birth Weight , Temperature , Australia/epidemiology , Litter Size , Heat Stress Disorders/veterinary , Heat-Shock Response
5.
J Physiol ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477893

ABSTRACT

Food intake and activity adapt during pregnancy to meet the increased energy demands. In comparison to non-pregnant females, pregnant mice consume more food, eating larger meals during the light phase, and reduce physical activity. How pregnancy changes the circadian timing of behaviour was less clear. We therefore randomised female C57BL/6J mice to mating for study until early (n = 10), mid- (n = 10) or late pregnancy (n = 11) or as age-matched, non-pregnant controls (n = 12). Mice were housed individually in Promethion cages with a 12 h light-12 h dark cycle [lights on at 07.00 h, Zeitgeber (ZT)0] for behavioural analysis. Food intake between ZT10 and ZT11 was greater in pregnant than non-pregnant mice on days 6.5-12.5 and 12.5-17.5. In mice that exhibited a peak in the last 4 h of the light phase (ZT8-ZT12), peaks were delayed by 1.6 h in the pregnant compared with the non-pregnant group. Food intake immediately after dark-phase onset (ZT13-ZT14) was greater in the pregnant than non-pregnant group during days 12.5-17.5. Water intake patterns corresponded to food intake. From days 0.5-6.5 onwards, the pregnant group moved less during the dark phase, with decreased probability of being awake, in comparison to the non-pregnant group. The onset of dark-phase activity, peaks in activity, and wakefulness were all delayed during pregnancy. In conclusion, increased food intake during pregnancy reflects increased amplitude of eating behaviour, without longer duration. Decreases in activity also contribute to positive energy balance in pregnancy, with delays to all measured behaviours evident from mid-pregnancy onwards. KEY POINTS: Circadian rhythms synchronise daily behaviours including eating, drinking and sleep, but how these change in pregnancy is unclear. Food intake increased, with delays in peaks of food intake behaviour late in the light phase from days 6.5 to 12.5 of pregnancy, in comparison to the non-pregnant group. The onset of activity after lights off (dark phase) was delayed in pregnant compared with non-pregnant mice. Activity decreased by ∼70% in the pregnant group, particularly in the dark (active) phase, with delays in peaks of wakefulness evident from days 0.5-6.5 of pregnancy onwards. These behavioural changes contribute to positive energy balance during pregnancy. Delays in circadian behaviours during mouse pregnancy were time period and pregnancy stage specific, implying different regulatory mechanisms.

6.
Eur Respir Rev ; 33(171)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38417970

ABSTRACT

There is an increased risk of adverse perinatal outcomes in the ∼17% of women with asthma during pregnancy. The mechanisms linking maternal asthma and adverse outcomes are largely unknown, but reflect joint effects of genetics and prenatal exposure to maternal asthma. Animal models are essential to understand the underlying mechanisms independent of genetics and comorbidities, and enable safe testing of interventions. This scoping review aimed to explore the methodology, phenotype, characteristics, outcomes and quality of published studies using preclinical maternal asthma models. MEDLINE (PubMed), Embase (Elsevier) and Web of Science were systematically searched using previously validated search strings for maternal asthma and for animal models. Two reviewers independently screened titles and abstracts, full texts, and then extracted and assessed the quality of each study using the Animal Research: Reporting of In Vivo Experiments (ARRIVE) 2.0 guidelines. Out of 3618 studies identified, 39 were eligible for extraction. Most studies were in rodents (86%) and all were models of allergic asthma. Maternal and progeny outcomes included airway hyperresponsiveness, airway resistance, inflammation, lung immune cells, lung structure and serum immunoglobulins and cytokines. Experimental design (100%), procedural details (97%) and rationale (100%) were most often reported. Conversely, data exclusion (21%), blinding (18%) and adverse events (8%) were reported in a minority of studies. Species differences in physiology and timing of development, the use of allergens not relevant to humans and a lack of comparable outcome measures may impede clinical translation. Future studies exploring models of maternal asthma should adhere to the minimum core outcomes set presented in this review.


Subject(s)
Asthma , Pregnancy Complications , Animals , Female , Humans , Pregnancy
7.
Peptides ; 172: 171114, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37926186

ABSTRACT

Small intestinal satiation pathways involve nutrient-induced stimulation of chemoreceptors leading to release of satiety hormones from intestinal enteroendocrine cells (ECCs). Whether adaptations in these pathways contribute to increased maternal food intake during pregnancy is unknown. To determine the expression of intestinal nutrient-sensors and satiety hormone transcripts and proteins across pregnancy in mice. Female C57BL/6J mice (10-12 weeks old) were randomized to mating and then tissue collection at early- (6.5 d), mid- (12.5 d) or late-pregnancy (17.5 d), or to an unmated age matched control group. Relative transcript expression of intestinal fatty acid, peptide and amino acid and carbohydrate chemoreceptors, as well as gut hormones was determined across pregnancy. The density of G-protein coupled receptor 93 (GPR93), free fatty acid receptor (FFAR) 4, cholecystokinin (CCK) and glucagon-like peptide1 (GLP-1) immunopositive cells was then compared between non-pregnant and late-pregnant mice. Duodenal GPR93 expression was lower in late pregnant than non-pregnant mice (P < 0.05). Ileal FFAR1 expression was higher at mid- than at early- or late-pregnancy. Ileal FFAR2 expression was higher at mid-pregnancy than in early pregnancy. Although FFAR4 expression was consistently lower in late-pregnant than non-pregnant mice (P < 0.001), the density of FFAR4 immunopositive cells was higher in the jejunum of late-pregnant than non-pregnant mice. A subset of protein and fatty acid chemoreceptor transcripts undergo region-specific change during murine pregnancy, which could augment hormone release and contribute to increased food intake. Further investigations are needed to determine the functional relevance of these changes.


Subject(s)
Gastrointestinal Hormones , Satiation , Animals , Female , Mice , Pregnancy , Cholecystokinin/metabolism , Fatty Acids , Gastrointestinal Hormones/metabolism , Mice, Inbred C57BL , Nutrients , Satiation/physiology
8.
Exp Physiol ; 108(6): 865-873, 2023 06.
Article in English | MEDLINE | ID: mdl-37022128

ABSTRACT

NEW FINDINGS: What is the central question of this study? Body mass and food intake change during the female ovarian cycle: does glucose transport by the small intestine also vary? What is the main finding and its importance? We have optimised Ussing chamber methodology to measure region-specific active glucose transport in the small intestine of adult C57BL/6 mice. Our study provides the first evidence that jejunal active glucose transport changes during the oestrous cycle in mice, and is higher at pro-oestrus than oestrus. These results demonstrate adaptation in active glucose uptake, concurrent with previously reported changes in food intake. ABSTRACT: Food intake changes across the ovarian cycle in rodents and humans, with a nadir during the pre-ovulatory phase and a peak during the luteal phase. However, it is unknown whether the rate of intestinal glucose absorption also changes. We therefore mounted small intestinal sections from C57BL/6 female mice (8-9 weeks old) in Ussing chambers and measured active ex vivo glucose transport via the change in short-circuit current (∆Isc ) induced by glucose. Tissue viability was confirmed by a positive ∆Isc response to 100 µM carbachol following each experiment. Active glucose transport, assessed after addition of 5, 10, 25 or 45 mM d-glucose to the mucosal chamber, was highest at 45 mM glucose in the distal jejunum compared to duodenum and ileum (P < 0.01). Incubation with the sodium-glucose cotransporter 1 (SGLT1) inhibitor phlorizin reduced active glucose transport in a dose-dependent manner in all regions (P < 0.01). Active glucose uptake induced by addition of 45 mM glucose to the mucosal chamber in the absence or presence of phlorizin was assessed in jejunum at each oestrous cycle stage (n = 9-10 mice per stage). Overall, active glucose uptake was lower at oestrus compared to pro-oestrus (P = 0.025). This study establishes an ex vivo method to measure region-specific glucose transport in the mouse small intestine. Our results provide the first direct evidence that SGLT1-mediated glucose transport in the jejunum changes across the ovarian cycle. The mechanisms underlying these adaptations in nutrient absorption remain to be elucidated.


Subject(s)
Glucose , Phlorhizin , Humans , Female , Animals , Mice , Glucose/metabolism , Phlorhizin/metabolism , Mice, Inbred C57BL , Intestine, Small/metabolism , Jejunum , Intestinal Absorption , Intestinal Mucosa/metabolism
9.
Front Endocrinol (Lausanne) ; 14: 1306513, 2023.
Article in English | MEDLINE | ID: mdl-38362586

ABSTRACT

Introduction: Sex differences in prenatal growth may contribute to sex-dependent programming effects on postnatal phenotype. Methods: We integrated for the first time phenotypic, histomorphological, clinico-chemical, endocrine and gene expression analyses in a single species, the bovine conceptus at mid-gestation. Results: We demonstrate that by mid-gestation, before the onset of accelerated growth, the female conceptus displays asymmetric lower growth compared to males. Female fetuses were smaller with lower ponderal index and organ weights than males. However, their brain:body weight, brain:liver weight and heart:body weight ratios were higher than in males, indicating brain and heart 'sparing'. The female placenta weighed less and had lower volumes of trophoblast and fetal connective tissue than the male placenta. Female umbilical cord vessel diameters were smaller, and female-specific relationships of body weight and brain:liver weight ratios with cord vessel diameters indicated that the umbilico-placental vascular system creates a growth-limiting environment where blood flow is redistributed to protect brain and heart growth. Clinico-chemical indicators of liver perfusion support this female-specific growth-limiting phenotype, while lower insulin-like growth factor 2 (IGF2) gene expression in brain and heart, and lower circulating IGF2, implicate female-specific modulation of key endocrine mediators by nutrient supply. Conclusion: This mode of female development may increase resilience to environmental perturbations in utero and contribute to sex-bias in programming outcomes including susceptibility to non-communicable diseases.


Subject(s)
Fetus , Placenta , Pregnancy , Female , Male , Animals , Cattle , Placenta/metabolism , Trophoblasts , Liver , Body Weight
10.
Paediatr Respir Rev ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38195368

ABSTRACT

Maternal asthma affects up to 17% of pregnancies and is associated with adverse infant, childhood, and adult respiratory outcomes, including increased risks of neonatal respiratory distress syndrome, childhood wheeze and asthma. In addition to genetics, these poor outcomes are likely due to the mediating influence of maternal asthma on the in-utero environment, altering fetal lung and immune development and predisposing the offspring to later lung disease. Maternal asthma may impair glucocorticoid signalling in the fetus, a process critical for lung maturation, and increase fetal exposure to proinflammatory cytokines. Therefore, interventions to control maternal asthma, increase glucocorticoid signalling in the fetal lung, or Vitamin A, C, and D supplementation to improve alveologenesis and surfactant production may be beneficial for later lung function. This review highlights potential mechanisms underlying maternal asthma and offspring respiratory morbidities and describes how pregnancy interventions can promote optimal fetal lung development in babies of asthmatic mothers.

11.
JBI Evid Synth ; 20(2): 640-646, 2022 02.
Article in English | MEDLINE | ID: mdl-35165214

ABSTRACT

OBJECTIVE: The aim of this review is to characterize the current state of literature and knowledge regarding adaptations of gastrointestinal nutrient absorption, and the determinants of this absorption during pregnancy in monogastric mammals. INTRODUCTION: Energy demands increase significantly during pregnancy due to the metabolic demands associated with placental and fetal growth, and the deposition of fat stores that support postnatal lactation. Previous studies have examined anatomical changes within the small intestine, but have focused on specific pregnancy stages or specific regions of the small intestine. Importantly, little is known about changes in nutrient absorption during pregnancy, and the underlying mechanisms that lead to these changes. An understanding of these adaptations will inform research to improve pregnancy outcomes for both mothers and newborns in the future. INCLUSION CRITERIA: This review will include primary literature that describes gastrointestinal nutrient absorption and/or its determinants during pregnancy in monogastric mammals, including humans and rodents. Only data for normal pregnancies will be included, and models of pathology and illness will be excluded. Studies must include comparisons between pregnant animals at known stages of pregnancy, and non-pregnant controls, or compare animals at different stages of pregnancy. METHODS: The following databases will be searched for literature on this topic: PubMed, Scopus, Web of Science, Embase, MEDLINE, and ProQuest Dissertations and Theses. Evidence screening and selection will be carried out independently by two reviewers, and conflicts will be resolved through discussion with additional members of the review team. Data will be extracted and presented in tables and/or figures, together with a narrative summary.


Subject(s)
Placenta , Pregnancy Outcome , Animals , Female , Fetal Development , Humans , Infant, Newborn , Mammals , Nutrients , Pregnancy , Review Literature as Topic
12.
Obesity (Silver Spring) ; 29(11): 1813-1824, 2021 11.
Article in English | MEDLINE | ID: mdl-34623766

ABSTRACT

A sufficient and balanced maternal diet is critical to meet the nutritional demands of the developing fetus and to facilitate deposition of fat reserves for lactation. Multiple adaptations occur to meet these energy requirements, including reductions in energy expenditure and increases in maternal food intake. The central nervous system plays a vital role in the regulation of food intake and energy homeostasis and responds to multiple metabolic and nutrient cues, including those arising from the gastrointestinal tract. This review describes the nutrient requirements of pregnancy and the impact of over- and undernutrition on the risk of pregnancy complications and adult disease in progeny. The central and peripheral regulation of food intake is then discussed, with particular emphasis on the adaptations that occur during pregnancy and the mechanisms that drive these changes, including the possible role of the pregnancy-associated hormones progesterone, estrogen, prolactin, and growth hormone. We identify the need for deeper mechanistic understanding of maternal adaptations, in particular, changes in gut-brain axis satiety signaling. Improved understanding of food intake regulation during pregnancy will provide a basis to inform strategies that prevent maternal under- or overnutrition, improve fetal health, and reduce the long-term health and economic burden for mothers and offspring.


Subject(s)
Brain-Gut Axis , Lactation , Eating , Energy Metabolism , Female , Humans , Nutritional Requirements , Pregnancy
13.
J Endocrinol ; 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34479185

ABSTRACT

The growth hormone (GH)-insulin-like growth factor (IGF) axis is one of the main drivers of mammalian growth and development. Pituitary secretion of GH is pulsatile and under positive and negative hypothalamic control, as well as stimulation from gastric-secreted acyl-ghrelin. GH has anabolic and metabolic effects both directly via the GH-receptor (GHR) and indirectly via stimulation of IGF1 production at multiple target tissues. In this review, we describe the major changes to this axis during pregnancy, with increasing GH abundance in the maternal circulation across multiple species. This stimulates secretion of IGFs, whose bioavailability is also increased by proteolytic cleavage of their circulating binding proteins during pregnancy. These changes in turn induce maternal metabolic adaptations to pregnancy and promote placental function and fetal growth, as does exogenous GH or IGF treatment in animal models of normal and compromised pregnancy. Finally, we explore alternative approaches to enhance maternal GH abundance during pregnancy to promote maternal adaptations, placental function and hence fetal growth.

14.
J Physiol ; 599(13): 3257-3258, 2021 07.
Article in English | MEDLINE | ID: mdl-33963558

Subject(s)
Fetus
15.
JBI Evid Synth ; 19(8): 2007-2013, 2021 08.
Article in English | MEDLINE | ID: mdl-33795583

ABSTRACT

OBJECTIVE: The primary objective of this systematic review is to synthesize the best available evidence on the relationship between in utero exposure to maternal asthma and postnatal allergy. Secondary objectives are to investigate the impact of asthma loss of control, asthma exacerbation, and asthma severity during pregnancy on risks of allergy and asthma in progeny. INTRODUCTION: Maternal asthma is a well-known risk factor for childhood asthma, with recent evidence suggesting that children of asthmatic mothers are also at increased risk of allergic diseases. Importantly, these do not appear to be purely genetic associations, since maternal asthma is more strongly associated with childhood asthma than paternal asthma. In addition, experimentally induced allergic asthma during pregnancy increases allergic responses to sensitization in mice. The strength of the relationships between exposure to maternal asthma or severity of maternal asthma, and progeny asthma and allergy are unknown. INCLUSION CRITERIA: This review will include primary studies that report incidence of physician-diagnosed asthma or allergic disease in human progeny who were exposed in utero to maternal asthma, in comparison to progeny not exposed to maternal asthma. METHODS: Initial search terms include (pregnan∗ OR gestat∗) AND asthma∗ AND allerg∗. We will search the following electronic databases for published and unpublished evidence: PubMed, Embase, MEDLINE (Ovid), Web of Science, Cochrane Library, CINAHL, Scopus, Informit Health, MedNar, ProQuest, and Trove. There will be no restrictions on publication date. Only studies available as a full-text English publication will be considered for inclusion. SYSTEMATIC REVIEW REGISTRATION NUMBER: PROSPERO CRD42020201538.


Subject(s)
Asthma , Hypersensitivity , Animals , Asthma/epidemiology , Family , Female , Mice , Pregnancy , Systematic Reviews as Topic
16.
J Anim Sci Biotechnol ; 12(1): 26, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33583422

ABSTRACT

Heat stress significantly impairs reproduction of sheep, and under current climatic conditions is a significant risk to the efficiency of the meat and wool production, with the impact increasing as global temperatures rise. Evidence from field studies and studies conducted using environmental chambers demonstrate the effects of hot temperatures (≥ 32 °C) on components of ewe fertility (oestrus, fertilisation, embryo survival and lambing) are most destructive when experienced from 5 d before until 5 d after oestrus. Temperature controlled studies also demonstrate that ram fertility, as measured by rates of fertilisation and embryo survival, is reduced when mating occurs during the period 14 to 50 d post-heating. However, the contribution of the ram to heat induced reductions in flock fertility is difficult to determine accurately. Based primarily on temperature controlled studies, it is clear that sustained exposure to high temperatures (≥ 32 °C) during pregnancy reduces lamb birthweight and will, therefore, decrease lamb survival under field conditions. It is concluded that both ewe and ram reproduction is affected by relatively modest levels of heat stress (≥ 32 °C) and this is a concern given that a significant proportion of the global sheep population experiences heat stress of this magnitude around mating and during pregnancy. Despite this, strategies to limit the impacts of the climate on the homeothermy, behaviour, resource use and reproduction of extensively grazed sheep are limited, and there is an urgency to improve knowledge and to develop husbandry practices to limit these impacts.

17.
Placenta ; 104: 232-235, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33450642

ABSTRACT

Maternal asthma is known to impact intrauterine growth outcomes, which may be mediated, in part, by altered androgen signalling. Our aim was to explore whether the sheep placenta expresses androgen receptor (AR) isoforms and determine if the differential expression of AR protein isoforms is altered by maternal asthma. Four known AR isoforms were detected (AR-FL, AR-v1, AR-v7, and AR-45), and their expression and subcellular distribution was altered in the presence of maternal allergic asthma. These findings underscore the importance for in vivo models of maternal asthma to delineate molecular patterns that may contribute to feto-placental growth and development.


Subject(s)
Asthma/metabolism , Placenta/metabolism , Protein Isoforms/metabolism , Receptors, Androgen/metabolism , Animals , Asthma/genetics , Disease Models, Animal , Female , Pregnancy , Protein Isoforms/genetics , Receptors, Androgen/genetics , Sheep
18.
Reproduction ; 161(2): 135-144, 2021 02.
Article in English | MEDLINE | ID: mdl-33434162

ABSTRACT

Animal models are needed to develop interventions to prevent or treat intrauterine growth restriction (IUGR). Foetal growth rates and effects of in utero exposures differ between sexes, but little is known about sex-specific effects of increasing litter size. We established a murine IUGR model using pregnancies generated by multiple embryo transfers, and evaluated sex-specific responses to increasing litter size. CBAF1 embryos were collected at gestation day 0.5 (GD0.5) and 6, 8, 10 or 12 embryos were transferred into each uterine horn of pseudopregnant female CD1 mice (n = 32). Foetal and placental outcomes were measured at GD18.5. In the main experiment, foetuses were genotyped (Sry) for analysis of sex-specific outcomes. The number of implantation sites (P = 0.033) and litter size (number of foetuses, P = 0.008) correlated positively with the number of embryos transferred, while placental weight correlated negatively with litter size (both P < 0.01). The relationship between viable litter size and foetal weight differed between sexes (interaction P = 0.002), such that foetal weights of males (P = 0.002), but not females (P = 0.233), correlated negatively with litter size. Placental weight decreased with increasing litter size (P < 0.001) and was lower in females than males (P = 0.020). Our results suggest that male foetuses grow as fast as permitted by nutrient supply, whereas the female maintains placental reserve capacity. This strategy reflecting sex-specific gene expression is likely to place the male foetus at greater risk of death in the event of a 'second hit'.


Subject(s)
Fetal Growth Retardation , Placenta , Animals , Disease Models, Animal , Embryo Transfer , Female , Fetal Weight , Litter Size , Male , Mice , Pregnancy
19.
Am J Physiol Gastrointest Liver Physiol ; 320(2): G183-G192, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33206550

ABSTRACT

Gastric vagal afferents (GVAs) sense food-related mechanical stimuli and signal to the central nervous system, to integrate control of meal termination. Pregnancy is characterized by increased maternal food intake, which is essential for normal fetal growth and to maximize progeny survival and health. However, it is unknown whether GVA function is altered during pregnancy to promote food intake. This study aimed to determine the mechanosensitivity of GVAs and food intake during early, mid-, and late stages of pregnancy in mice. Pregnant mice consumed more food compared with nonpregnant mice, notably in the light phase during mid- and late pregnancy. The increased food intake was predominantly due to light-phase increases in meal size across all stages of pregnancy. The sensitivity of GVA tension receptors to gastric distension was significantly attenuated in mid- and late pregnancy, whereas the sensitivity of GVA mucosal receptors to mucosal stroking was unchanged during pregnancy. To determine whether pregnancy-associated hormonal changes drive these adaptations, the effects of estradiol, progesterone, prolactin, and growth hormone on GVA tension receptor mechanosensitivity were determined in nonpregnant female mice. The sensitivity of GVA tension receptors to gastric distension was augmented by estradiol, attenuated by growth hormone, and unaffected by progesterone or prolactin. Together, the data indicate that the sensitivity of GVA tension receptors to tension is reduced during pregnancy, which may attenuate the perception of gastric fullness and explain increased food intake. Further, these adaptations may be driven by increases in maternal circulating growth hormone levels during pregnancy.NEW & NOTEWORTHY This study provides first evidence that gastric vagal afferent signaling is attenuated during pregnancy and inversely associated with meal size. Growth hormone attenuated mechanosensitivity of gastric vagal afferents, adding support that increases in maternal growth hormone may mediate adaptations in gastric vagal afferent signaling during pregnancy. These findings have important implications for the peripheral control of food intake during pregnancy.


Subject(s)
Afferent Pathways/physiology , Neuronal Plasticity/physiology , Stomach/innervation , Vagus Nerve/physiology , Animals , Female , Mice , Pregnancy
20.
J Anim Sci Biotechnol ; 11(1): 107, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33292527

ABSTRACT

High incidences of pre-weaning mortality continue to limit global sheep production, constituting a major economic and welfare concern. Despite significant advances in genetics, nutrition, and management, the proportion of lamb deaths has remained stable at 15-20% over the past four decades. There is mounting evidence that melatonin can improve outcomes in compromised ovine pregnancies via enhanced uterine bloodflow and neonatal neuroprotection. This review provides an overview of the major risk factors and underlying mechanisms involved in perinatal lamb mortality and discusses the potential of melatonin treatment as a remedial strategy. Supplementing pregnant ewes with melatonin enhances uterine bloodflow and fetal oxygenation, and potentially birthweight and neonatal thermogenic capacity. Melatonin freely crosses the ovine placenta and blood-brain barrier and provides neuroprotection to the fetal lamb during periods of chronic and acute hypoxia throughout gestation, with improved behavioural outcomes in hypoxic neonates. The current literature provides strong evidence that maternal melatonin treatment improves outcomes for lambs which experience compromised in utero development or prolonged parturition, though to date this has not been investigated in livestock production systems. As such there is a clear basis for continued research into the effects of maternal melatonin supplementation during gestation on pre-weaning survival under extensive production conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...