Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS One ; 11(6): e0157535, 2016.
Article in English | MEDLINE | ID: mdl-27309717

ABSTRACT

Unlike peripheral lymph nodes (PLN), the mesenteric lymph nodes (MLN) draining the gastrointestinal (GI) tract are exposed to microbes and microbial products from the intestines and as such, are immunologically distinct. GI draining (MLN) have also been shown to be sites of early viral replication and likely impact early events that determine the course of HIV infection. They also are important reservoir sites that harbor latently-infected cells and from which the virus can emerge even after prolonged combination antiretroviral therapy (cART). Changes in the microbial flora and increased permeability of the GI epithelium associated with lentiviral infection can impact the gut associated lymphoid tissue (GALT) and induce changes to secondary lymphoid organs limiting immune reconstitution with cART. Nonhuman primate models for AIDS closely model HIV infection in humans and serial sampling of the GALT and associated secondary lymphoid organs in this model is crucial to gain a better understanding of the critical early events in infection, pathogenesis, and the role of immune responses or drugs in controlling virus at these sites. However, current techniques to sample GI draining (MLN) involve major surgery and/or necropsy, which have, to date, limited the ability to investigate mechanisms mediating the initiation, persistence and control of infection in this compartment. Here, we describe a minimally invasive laparoscopic technique for serial sampling of these sites that can be used with increased sampling frequency, yields greater cell numbers and immune cell subsets than current non-invasive techniques of the GALT and reduces the potential for surgical complications that could complicate interpretation of the results. This procedure has potential to facilitate studies of pathogenesis and evaluation of preventive and treatment interventions, reducing sampling variables that can influence experimental results, and improving animal welfare.


Subject(s)
Colon/surgery , Laparoscopy/veterinary , Lymph Node Excision/veterinary , Lymph Nodes/surgery , Mesentery/surgery , Anesthesia, General , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Biomarkers , Cell Survival , Gene Expression , Immunophenotyping , Laparoscopy/methods , Lymph Node Excision/methods , Lymphocytes/cytology , Lymphocytes/immunology , Macaca
3.
J Clin Invest ; 124(6): 2538-49, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24837435

ABSTRACT

Vaccines are largely evaluated for their ability to promote adaptive immunity, with little focus on the induction of negative immune regulators. Adjuvants facilitate and enhance vaccine-induced immune responses and have been explored for mediating protection against HIV. Using a regimen of peptide priming followed by a modified vaccinia Ankara (MVA) boost in a nonhuman primate model, we found that an SIV vaccine incorporating molecular adjuvants mediated partial protection against rectal SIVmac251 challenges. Animals treated with vaccine and multiple adjuvants exhibited a reduced viral load (VL) compared with those treated with vaccine only. Surprisingly, animals treated with adjuvant alone had reduced VLs that were comparable to or better than those of the vaccine-treated group. VL reduction was greatest in animals with the MHC class I allele Mamu-A*01 that were treated with adjuvant only and was largely dependent on CD8+ T cells. Early VLs correlated with Ki67+CCR5+CD4+ T cell frequency, while set-point VL was associated with expansion of a myeloid cell population that was phenotypically similar to myeloid-derived suppressor cells (MDSCs) and that suppressed T cell responses in vitro. MDSC expansion occurred in animals receiving vaccine and was not observed in the adjuvant-only group. Collectively, these results indicate that vaccine-induced MDSCs inhibit protective cellular immunity and suggest that preventing MDSC induction may be critical for effective AIDS vaccination.


Subject(s)
Myeloid Cells/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Adaptive Immunity , Adjuvants, Immunologic/administration & dosage , Animals , CD8-Positive T-Lymphocytes/immunology , Female , Macaca mulatta , Male , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Transforming Growth Factor beta/immunology , Viral Load
4.
Proc Natl Acad Sci U S A ; 106(11): 4425-9, 2009 Mar 17.
Article in English | MEDLINE | ID: mdl-19255423

ABSTRACT

The lack of a primate model that utilizes HIV-1 as the challenge virus is an impediment to AIDS research; existing models generally employ simian viruses that are divergent from HIV-1, reducing their usefulness in preclinical investigations. Based on an understanding of species-specific variation in primate TRIM5 and APOBEC3 antiretroviral genes, we constructed simian-tropic (st)HIV-1 strains that differ from HIV-1 only in the vif gene. We demonstrate that such minimally modified stHIV-1 strains are capable of high levels of replication in vitro in pig-tailed macaque (Macaca nemestrina) lymphocytes. Importantly, infection of pig-tailed macaques with stHIV-1 results in acute viremia, approaching the levels observed in HIV-1-infected humans, and an ensuing persistent infection for several months. stHIV-1 replication was controlled thereafter, at least in part, by CD8+ T cells. We demonstrate the potential utility of this HIV-1-based animal model in a chemoprophylaxis experiment, by showing that a commonly used HIV-1 therapeutic regimen can provide apparently sterilizing protection from infection following a rigorous high-dose stHIV-1 challenge.


Subject(s)
Disease Models, Animal , HIV Infections/virology , HIV-1/genetics , Macaca , Animals , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Chemoprevention , Genetic Engineering , Viremia , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...