Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 60(24): 19345-19355, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34889600

ABSTRACT

Canfieldite, Ag8SnS6, is a semiconducting mineral notable for its high ionic conductivity, photosensitivity, and low thermal conductivity. We report the solution growth of large single crystals of Ag8SnS6 of mass up to 1 g from a ternary Ag-Sn-S melt. On cooling from high temperature, Ag8SnS6 undergoes a known cubic (F4̅3m) to orthorhombic (Pna21) phase transition at ≈460 K. By studying the magnetization and thermal expansion between 5-300 K, we discover a second structural transition at ≈120 K. Single crystal X-ray diffraction reveals the low-temperature phase adopts a different orthorhombic structure with space group Pmn21 (a = 7.662 9(5) Å, b = 7.539 6(5) Å, c = 10.630 0(5) Å, Z = 2 at 90 K) that is isostructural to the room-temperature forms of the related Se-based compounds Ag8SnSe6 and Ag8GeSe6. The 120 K transition is first-order and has a large thermal hysteresis. On the basis of the magnetization and thermal expansion data, the room-temperature polymorph can be kinetically arrested into a metastable state by rapidly cooling to temperatures below 40 K. We last compare the room- and low-temperature forms of Ag8SnS6 with its argyrodite analogues, Ag8TQ6 (T = Si, Ge, Sn; Q = S, Se), and identify a trend relating the preferred structures to the unit cell volume, suggesting smaller phase volume favors the Pna21 arrangement. We support this picture by showing that the transition to the Pmn21 phase is avoided in Ge alloyed Ag8Sn1-xGexS6 samples as well as in pure Ag8GeS6.

2.
Phys Rev Lett ; 127(14): 147204, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34652199

ABSTRACT

Organic salts represent an ideal experimental playground for studying the interplay between magnetic and charge degrees of freedom, which has culminated in the discovery of several spin-liquid candidates such as κ-(ET)_{2}Cu_{2}(CN)_{3} (κ-Cu). Recent theoretical studies indicate the possibility of chiral spin liquids stabilized by ring exchange, but the parent states with chiral magnetic order have not been observed in this material family. In this Letter, we discuss the properties of the recently synthesized κ-(BETS)_{2}Mn[N(CN)_{2}]_{3} (κ-Mn). Based on analysis of specific heat, magnetic torque, and NMR measurements combined with ab initio calculations, we identify a spin-vortex crystal order. These observations definitively confirm the importance of ring exchange in these materials and support the proposed chiral spin-liquid scenario for triangular lattice organics.

4.
Rev Sci Instrum ; 91(9): 095103, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33003820

ABSTRACT

We report measurements of the temperature- and pressure-dependent resistance, R(T, p), of a manganin manometer in a 4He-gas pressure setup from room temperature down to the solidification temperature of 4He (Tsolid ∼ 50 K at 0.8 GPa) for pressures, p, between 0 GPa and ∼0.8 GPa. The same manganin wire manometer was also measured in a piston-cylinder cell (PCC) from 300 K down to 1.8 K and for pressures between 0 GPa and ∼2 GPa. From these data, we infer the temperature and pressure dependence of the pressure coefficient of manganin, α(T, p), defined by the equation Rp = (1 + αp)R0, where R0 and Rp are the resistances of manganin at ambient pressure and finite pressure, respectively. Our results indicate that upon cooling, α first decreases, then goes through a broad minimum at ∼120 K, and increases again toward lower temperatures. In addition, we find that α is almost pressure-independent at T ≳ 60 K up to p ∼ 2 GPa, but shows a pronounced p dependence at T ≲ 60 K. Using this manganin manometer, we demonstrate that p overall decreases with decreasing temperature in the PCC for the full pressure range and that the size of the pressure difference between room temperature and low temperatures (T = 1.8 K), Δp, decreases with increasing pressure. We also compare the pressure values inferred from the manganin manometer with the low-temperature pressure, determined from the superconducting transition temperature of elemental lead (Pb). As a result of these data and analysis, we propose a practical algorithm to infer the evolution of pressure with temperature in a PCC.

5.
Rev Sci Instrum ; 91(2): 023904, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32113408

ABSTRACT

Uniaxial stress, as well as hydrostatic pressure are often used to tune material properties in condensed matter physics. Here, we present a setup that allows for the study of the combined effects of quasi-uniaxial stress and hydrostatic pressure. Following earlier designs for measurements under finite stress at ambient pressures [e.g., Chu et al., Science 337, 710 (2012)], the present setup utilizes a piezoelectric actuator to change stress in situ inside the piston-cylinder pressure cell. We show that the actuator can be operated over the full temperature (from 30 K up to 260 K) and pressure range (up to ≈2 GPa), resulting in a clear and measurable quasi-uniaxial strain. To demonstrate functionality, measurements of the elastoresistance (i.e., the change of resistance of a sample as a response to quasi-uniaxial strain) under finite hydrostatic pressure on the iron-based compound BaFe2As2 are presented as a proof-of-principle example and discussed in the framework of electronic nematicity. Overall, this work introduces the combination of in situ tunable quasi-uniaxial stress and large (up to ≈2 GPa) hydrostatic pressure as a powerful combination in the study of novel electronic phases. In addition, it also points toward further technical advancements which can be made in the future.

6.
Phys Rev Lett ; 123(16): 167002, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31702365

ABSTRACT

The iron-based superconductor FeSe offers a unique possibility to study the interplay of superconductivity with purely nematic as well magnetic-nematic order by pressure (p) tuning. By measuring specific heat under p up to 2.36 GPa, we study the multiple phases in FeSe using a thermodynamic probe. We conclude that superconductivity is bulk across the entire p range and competes with magnetism. In addition, whenever magnetism is present, fluctuations exist over a wide temperature range above both the bulk superconducting and the magnetic transitions. Whereas the magnetic fluctuations are likely temporal, the superconducting fluctuations may be either temporal or spatial. These observations highlight similarities between FeSe and underdoped cuprate superconductors.

7.
Phys Rev Lett ; 123(2): 027601, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386497

ABSTRACT

Inelastic neutron scattering measurements on the molecular dimer-Mott insulator κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Cl reveal a phonon anomaly in a wide temperature range. Starting from T_{ins}∼50-60 K where the charge gap opens, the low-lying optical phonon modes become overdamped upon cooling towards the antiferromagnetic ordering temperature T_{N}=27 K, where also a ferroelectric ordering at T_{FE}≈T_{N} occurs. Conversely, the phonon damping becomes small again when spins and charges are ordered below T_{N}, while no change of the lattice symmetry is observed across T_{N} in neutron diffraction measurements. We assign the phonon anomalies to structural fluctuations coupled to charge and spin degrees of freedom in the BEDT-TTF molecules.

8.
Rev Sci Instrum ; 90(2): 023911, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30831698

ABSTRACT

We report on the resistance behavior of bare-chip Cernox thermometers under pressures up to 2 GPa, generated in a piston-cylinder pressure cell. Our results clearly show that Cernox thermometers, frequently used in low-temperature experiments due to their high sensitivity, remain highly sensitive even under applied pressure. We show that these thermometers are therefore ideally suited for measurements of heat capacity under pressure utilizing an ac oscillation technique up to at least 150 K. Our Cernox-based system is very accurate in determining changes in the specific heat as a function of pressure as demonstrated by measurements of the heat capacity on three different test cases: (i) the superconducting transition in elemental Pb (Tc = 7.2 K), (ii) the antiferromagnetic transition in the rare-earth compound GdNiGe3 (TN = 26 K), and (iii) the structural/magnetic transition in the iron-pnictide BaFe2As2 (Ts,N = 130 K). The chosen examples demonstrate the versatility of our technique for measuring the specific heat under the pressure of various condensed-matter systems with very different transition temperatures as well as amounts of removed entropy.

9.
J Phys Condens Matter ; 31(3): 035701, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30539798

ABSTRACT

We present an experimental study of the superconducting properties of NiBi3 as a function of pressure by means of resistivity and magnetization measurements and combine our results with density functional theory calculations of the band structure under pressure. We find a moderate suppression of the critical temperature [Formula: see text] from [Formula: see text] [Formula: see text] K to [Formula: see text] [Formula: see text] K by pressures up to 2 GPa. By taking into account the change of the band structure as a function of pressure, we argue that the decrease in [Formula: see text] is consistent with conventional, electron-phonon-mediated BCS-type superconductivity.

10.
Phys Rev Lett ; 120(24): 247601, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29957011

ABSTRACT

By applying measurements of the dielectric constants and relative length changes to the dimerized molecular conductor κ-(BEDT-TTF)_{2}Hg(SCN)_{2}Cl, we provide evidence for order-disorder type electronic ferroelectricity that is driven by the charge order within the (BEDT-TTF)_{2} dimers and stabilized by a coupling to the anions. According to our density functional theory calculations, this material is characterized by a moderate strength of dimerization. This system thus bridges the gap between strongly dimerized materials, often approximated as dimer-Mott systems at 1/2 filling, and nondimerized or weakly dimerized systems at 1/4 filling, exhibiting a charge order. Our results indicate that intradimer charge degrees of freedom are of particular importance in correlated κ-(BEDT-TTF)_{2}X salts and can create novel states, such as electronically driven multiferroicity or charge-order-induced quasi-one-dimensional spin liquids.

11.
Sci Adv ; 2(12): e1601646, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27957540

ABSTRACT

The Mott metal-insulator transition, a paradigm of strong electron-electron correlations, has been considered as a source of intriguing phenomena. Despite its importance for a wide range of materials, fundamental aspects of the transition, such as its universal properties, are still under debate. We report detailed measurements of relative length changes ΔL/L as a function of continuously controlled helium-gas pressure P for the organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl across the pressure-induced Mott transition. We observe strongly nonlinear variations of ΔL/L with pressure around the Mott critical endpoint, highlighting a breakdown of Hooke's law of elasticity. We assign these nonlinear strain-stress relations to an intimate, nonperturbative coupling of the critical electronic system to the lattice degrees of freedom. Our results are fully consistent with mean-field criticality, predicted for electrons in a compressible lattice with finite shear moduli. We argue that the Mott transition for all systems that are amenable to pressure tuning shows the universal properties of an isostructural solid-solid transition.

12.
Inorg Chem ; 51(16): 8948-55, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22849708

ABSTRACT

Three new ternary copper phosphides, Sr(2)Cu(6)P(5), Eu(2)Cu(6)P(5), and EuCu(4)P(3), have been synthesized from the elements in evacuated silica capsules. Eu(2)Cu(6)P(5) and Sr(2)Cu(6)P(5) adopt the Ca(2)Cu(6)P(5)-type structure, while EuCu(4)P(3) is isostructural to BaMg(4)Si(3) and still remains the only representative of this structure type among the ternary Cu pnictides. All three materials show metallic conductivity in the temperature range 2 K ≤ T ≤ 290 K, with no indication for superconductivity. For Eu(2)Cu(6)P(5) and EuCu(4)P(3), long-range magnetic order was observed, governed by 4f local moments on the Eu atoms with predominant ferromagnetic interactions. While Eu(2)Cu(6)P(5) shows a single ferromagnetic transition at T(C) = 34 K, the magnetic behavior of EuCu(4)P(3) is more complex, giving rise to three consecutive magnetic phase transitions at 70, 43, and 18 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...