Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Evol ; 76(2): 116-27, 2010.
Article in English | MEDLINE | ID: mdl-20948188

ABSTRACT

Species-specific characteristics of neuronal plasticity emerging from comparative studies can address the functional relevance of hippocampal or cortical plasticity in the light of ecological adaptation and evolutionary history of a given species. Here, we present a quantitative and qualitative analysis of neurogenesis in young and adult free-living Wahlberg's epauletted fruit bats. Using the markers for proliferating cell nuclear antigen (PCNA), bromodeoxyuridine (BrdU), doublecortin (DCX) and polysialic acid neural cell adhesion molecule (PSA-NCAM), our findings in the hippocampus, olfactory bulb and cortical regions are described and compared to reports in other mammals. Expressed as a percentage of the total number of granule cells, PCNA- and BrdU-positive cells accounted for 0.04 in young to 0.01% in adult animals; DCX-positive cells for 0.05 (young) to 0.01% (adult); PSA-NCAM-positive cells for 0.1 (young) to 0.02% (adult), and pyknotic cells for 0.007 (young) to 0.005% (adult). The numbers were comparable to other long-lived, late-maturing mammals such as primates. A significant increase in the total granule cell number from young to adult animals demonstrated the successful formation and integration of new cells. In adulthood, granule cell number appeared stable and was surprisingly low in comparison to other species. Observations in the olfactory bulb and rostral migratory stream were qualitatively similar to descriptions in other species. In the ventral horn of the lateral ventricle, we noted prominent expression of DCX and PSA-NCAM forming a temporal migratory stream targeting the piriform cortex, possibly reflecting the importance of olfaction to these species. Low, but persistent hippocampal neurogenesis in non-echolocating fruit bats contrasted the findings in echolocating microbats, in which hippocampal neurogenesis was largely absent. Together with the observed intense cortical plasticity in the olfactory system of fruit bats we suggest a differential influence of sensory modalities on hippocampal and cortical plasticity in this mammalian order.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/growth & development , Chiroptera/growth & development , Hippocampus/cytology , Hippocampus/growth & development , Neurogenesis/physiology , Neuronal Plasticity/physiology , Animals , Chiroptera/anatomy & histology , Female , Male
2.
Brain Struct Funct ; 214(4): 375-93, 2010 May.
Article in English | MEDLINE | ID: mdl-20127356

ABSTRACT

This study describes the organisation of the entorhinal cortex of the Megachiroptera, straw-coloured fruit bat and Wahlberg's epauletted fruit bat. Using Nissl and Timm stains, parvalbumin and SMI-32 immunohistochemistry, we identified five fields within the medial (MEA) and lateral (LEA) entorhinal areas. MEA fields E(CL) and E(C) are characterised by a poor differentiation between layers II and III, a distinct layer IV and broad, stratified layers V and VI. LEA fields E(I), E(R) and E(L) are distinguished by cell clusters in layer II, a clear differentiation between layers II and III, a wide columnar layer III and a broad sublayer Va. Clustering in LEA layer II was more typical of the straw-coloured fruit bat. Timm-staining was most intense in layers Ib and II across all fields and layer III of field E(R). Parvalbumin-like staining varied along a medio-lateral gradient with highest immunoreactivity in layers II and III of MEA and more lateral fields of LEA. Sparse SMI-32-like immunoreactivity was seen only in Wahlberg's epauletted fruit bat. Of the neurons in MEA layer II, ovoid stellate cells account for approximately 38%, polygonal stellate cells for approximately 8%, pyramidal cells for approximately 18%, oblique pyramidal cells for approximately 6% and other neurons of variable morphology for approximately 29%. Differences between bats and other species in cellular make-up and cytoarchitecture of layer II may relate to their three-dimensional habitat. Cytoarchitecture of layer V in conjunction with high encephalisation and structural changes in the hippocampus suggest similarities in efferent hippocampal --> entorhinal --> cortical interactions between fruit bats and primates.


Subject(s)
Chiroptera/anatomy & histology , Chiroptera/classification , Entorhinal Cortex/anatomy & histology , Animals , Entorhinal Cortex/cytology , Entorhinal Cortex/metabolism , Female , Imaging, Three-Dimensional , Neurofilament Proteins/metabolism , Neurons/metabolism , Parvalbumins/metabolism , Stereotaxic Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...